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ABSTRACT 

 

  This dissertation consists of three chapters that explore environmental policy. 

Chapter 1 empirically investigates the potential for incentives to encourage the adoption 

of low-emission alternatives to gasoline motorcycles. Hanoi, Vietnam, like many Asian 

cities, is experiencing rapid growth in the ownership of personal gasoline-powered 

motorcycles and scooters, and along with this heightened air quality issues. Electric 

scooters have the potential to reduce air pollution as an alternative to gasoline-powered 

motorcycles; however, electric scooters have yet to penetrate the Vietnamese and other 

large Asian markets. This study uses a choice experiment survey to elicit the demand for 

electric scooters, with focus on the effects that economic incentives and technology 

improvements have on adoption. 

Chapter 2 takes the first steps toward incorporating point sources into the theoretical 

discussion on nonpoint pollution ambient taxes.  Previous investigations into the use of 

ambient taxes for nonpoint source pollution have not addressed the role of point sources, 

even though many watersheds have both source types.  This paper examines the use of 

taxes for jointly regulating point and nonpoint sources.  A model of point-nonpoint 

pollution is developed, and within this framework taxes are applied to achieve different 

regulatory objectives, including implementing optimal emissions reductions, as well as 

meeting exogenously specified environmental goals at least cost.  Discussion centers on 

comparison of the point and nonpoint taxes in each scenario. 

Chapter 3 is an experimental economics examination of the design of markets for 

water quality trading.  Water quality trading is endorsed by policymakers as a tool for 
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reducing pollution in watersheds in a cost-effective manner, and many watersheds in the 

U.S. have established water quality trading programs. As a whole, these programs have 

not been successful. It is hypothesized that common features of these programs, such as 

the market institutions in place, may contribute to the limited success. As a first step in 

empirically investigating water quality trading markets, this study uses laboratory 

experiments to isolate how different institutions affect economic efficiency. In particular, 

we compare cap-and-trade, two forms of baseline-and-credit institution, and a tax/subsidy 

regulation, and examine the effect of introducing fixed technology costs with these four 

institutions. 
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CHAPTER 1 :  ESTIMATING THE EFFECT OF INCENTIVES ON THE 

ADOPTION OF ELECTRIC SCOOTERS:  

A STATED CHOICE EXPERIMENT IN VIETNAM 

 

 

1.1 Introduction 

 

A growing body of research examines the effectiveness of economic incentives 

for adopting cleaner and more energy efficient vehicles.  The majority of this work 

almost exclusively focuses on the potential for alternatives to gasoline-powered cars, 

such as electric, alternative fuel, and hybrid vehicles.  Consequently, findings from 

the literature are less applicable in areas where private motorized transportation is 

dominated by motorcycles.  This is certainly the case in much of the developing 

world and especially in developing Asia.   

Fueled by rising incomes, a greater demand for personal mobility, and congested 

roadways, Asia’s motorcycle population is the largest in the world and growing 

rapidly.  As a result many developing Asian cities are experiencing shifts from 

relatively low-emitting transportation modes such as walking, cycling, and public 

transportation to motorcycles.  In seven Asian countries (including China and India), 

motorcycle ownership has grown by more than 10% annually from 1989-2002 

(Meszler 2007).   

In these highly motorizing countries, the relevant alternatives to examine are low-

emitting motorized two-wheelers.  Electric scooters (e-scooters) are two-wheeled 

motorized vehicles that are similar to gasoline-powered motorcycles, but have zero local 

tailpipe emissions, operate solely on battery power, and are recharged by plugging in at 
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home or work rather than refilled at a gasoline station.  They are a leading technology to 

emerge among low-emitting motorcycle alternatives in Asia.  E-scooters offer potentially 

large benefits in the forms of urban air pollution reductions and energy efficiency gains.  

However, like demand for their car-counterparts, demand for e-scooters has been slow to 

develop.
1
 We are aware of no other studies that examine the effect of incentives on the 

adoption of low-emitting motorcycle alternatives.  In this study, we use a choice 

experiment survey of Hanoi, Vietnam residents to estimate e-scooter demand and 

explicitly estimate the effect of economic incentives and technological improvements on 

the demand for e-scooters. 

Hanoi’s motorcycle population is one of the fastest growing in the world and a major 

contributor to Hanoi’s urban air quality impairment, making Hanoi a prime location for 

examining the potential for e-scooters.  In 2005, Hanoi had 1.5 million registered 

motorcycles for a population of three million people, and the number of motorcycles has 

been growing at an average annual rate of about 15 percent (Meszler 2007; Tuan and 

Shimizu 2005).  Motorcycles comprised about 65 percent of the city’s vehicular trips in 

2005 (World Bank 2006) and have the largest share of vehicle emissions at 43 percent of 

particulate matter and more than 54 percent of carbon monoxide and hydrocarbons 

(World Bank 2008).   

                                                 

 
1
 China has been a remarkable exception.  In the past decade in China, a massive transportation mode 

switch has seen the Chinese e-bicycle and e-scooter market grow from 40,000 produced in 1998 to over 20 

million produced in 2009 (Jamerson and Benjamin 2005).  It is estimated that there are 40-50 million 

electric two-wheelers in China now. This dramatic transition was driven by China’s burgeoning demand for 

personal mobility, historic reliance on two-wheeled vehicles, and government restrictions on the use of 

competing gasoline-powered motorcycles (Weinert, Ma et al. 2007). 
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The impact that Hanoi’s motorcycles have on its air quality is indicative of the threat 

motorcycles pose throughout developing Asia.  According to the most recent estimates by 

the World Health Organization, developing Asian countries accounted for about half of 

approximately one million worldwide annual deaths attributable to urban air pollution in 

2004 (World Health Organization 2009), and the growth in the Asian motorcycle 

population is expected to have a significant impact on worsening this problem.  Unlike 

cars, many of the motorcycles being driven in Asian cities lack sophisticated exhaust 

treatments, so their emission rates of conventional local air pollutants such as particulate 

matter (PM), volatile organic compounds (VOC) and carbon monoxide (CO) are quite 

high. 

While there are some e-scooters in Hanoi very few consumers are actually adopting 

this mode.  Given the low adoption rates and our objective to identify the effects of 

economic incentive and technology improvements that are beyond the scope of existing 

data, we rely on using a stated preference survey.  Stated-preference methods are 

frequently used in marketing for forecasting new product demand (Louviere and Hensher 

1983), and are especially valuable when market data are limited or when evaluating 

proposed policies, both of which our true in our case.  For these same reasons, stated 

preference surveys have been the primary means of investigating the demand for electric, 

hybrid and alternative fuel cars (Brownstone and Train 1999; Bunch et al. 1993; Calfee 

1985; Dagsvik and et al. 2002; Ewing and Sarigollu 1998; Ewing and Sarigollu 2000; 

Hensher 1982; Potoglou and Kanaroglou 2007).  To the best of our knowledge, the study 

by Chiu and Tzeng (1999) represents the only stated preference study that examines the 

demand for e-scooters. In particular, they conduct a survey in Taiwan to evaluate the 
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choice between a large-engine motorcycle, a small-engine motorcycle, and an e-scooter 

based on a number of vehicle attributes; however, the effects of economic incentive 

instruments were not explicitly considered. 

We use the data from our stated choice experiment to estimate the parameters of a 

mixed logit model.  We find that sales tax incentives have a strong effect on mode choice.  

These results are consistent with studies on incentives for electric, hybrid and alternative 

fuel cars that show sales tax incentives to be one of the most powerful tools for 

stimulating adoption.  Stated choice experiments by Ewing and Sarigollu (2000) and 

Potoglou and Kanaroglou (2007) find that sales tax incentives have a strong effect on 

vehicle purchase decisions relative to other incentives such as exemption from road 

access fees and parking fees and access to HOV lanes.  Recent work that analyzes data on 

actual sales of hybrid cars reaches similar conclusions about the significant impact of 

sales tax incentives on vehicle purchasing decisions (Chandra et al. 2010; Gallagher and 

Muehlegger 2011). While our results complement these findings, they also expand on 

them by demonstrating the significance of sales tax incentives for the purchase decision 

of motorized two-wheelers. 

We reject the hypothesis that the effect of a sales tax change on vehicle choice is 

equivalent to the effect of an equal change in the purchase price of a vehicle, finding that 

the effect of sales tax is significantly greater than that of purchase price.  Related findings 

have been obtained from surveys that examine the influence of payment vehicle on the 
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valuation of public goods.
2
  A stated preference study by Morrison et al. (2000) finds that 

willingness to pay (WTP) for a project differs based on whether it is funded by increases 

in income taxes versus increases in water rates.   A stated preference study by Bergstrom 

et al. (2004) and stated choice experiments by Swallow and McGonagle (2006) and 

Nunes and Travisi (2009) all find higher WTP under budget reallocation as opposed to 

the introduction of a new tax.  While these studies regard the funding of public projects: a 

groundwater drainage pipe (Morrison et al. 2000); ground water quality protection 

(Bergstrom et al. 2004); costal land conservation (Swallow and McGonagle 2006); and a 

rail noise abatement program (Nunes and Travisi 2009), ours regards the purchase of a 

private good.  In a paper more closely related to our own, Gallagher and Muehlegger 

(2011) analyze actual sales data and find that the effect of a sales tax waiver on hybrid 

car sales is ten times larger than the effect of an income tax credit of the same amount.   

The summarized findings demonstrate that the way in which a good is paid for 

matters, either in peoples’ stated values, their actual values, or in both, although it is 

perhaps more surprising to find the divergence between the effects of purchase price and 

sales tax than to find a difference between alternative payment vehicles, or in the case of 

Gallagher and Muehlegger (2011), alternative incentives.  In our experiment, we 

essentially have a hybrid payment vehicle that consists of the purchase price and sales 

tax.  What we observe is consumers responding disproportionately to the components of 

that hybrid payment vehicle even though those components enter the final price in an 

                                                 

 
2
 In stated preference surveys the payment vehicle refers to the mechanism that will finance a public 

project.  For example, conservation of an environmental resource might be funded by an increase in sales 

tax, income tax, rates, or entry fees, by a reallocation of budget, by voluntary contributions, etc. 
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identical way.  The observation leads to natural questions about the reasons for this 

difference in the effects of purchase price and sales tax and the implications for 

researchers and policymakers, which we discuss in the conclusion.   

The remainder of the paper is organized as follows.  Section 1.2 describes the choice 

experiment; Section 1.3 describes the survey and data collection process; Section 1.4 

specifies the mixed logit model; Section 1.5 presents model estimation; Section 1.6 

presents marginal willingness to pay estimates; Section 1.7 examines the effect of various 

sales tax scenarios on the e-scooter market share; Section 1.8 calculates implicit discount 

rates for operating cost and maintenance cost savings; and Section 1.9 concludes. 

 

1.2 The Choice Experiment 

 

We designed the choice experiment in order to evaluate factors that affect the 

purchase choice of a two-wheeled motorized vehicle.  We presented respondents with 

information on the levels of nine vehicle-related attributes for three choice alternatives: 

an e-scooter, a standard gasoline motorcycle, and a large gasoline motorcycle.
3
  

Characterizing these vehicles in terms of nine attributes meant that the experiment did not 

include all of the attributes hypothesized to be important to the purchase decision; 

however, limiting the number of attributes in a choice experiment is necessary in order to 

limit the cognitive burden placed on respondents.  In an attempt to control for the 

                                                 

 
3
 We define standard and large gasoline motorcycles as those with engine displacement around 100cc and 

250cc, respectively. 
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omission of relevant variables, we instructed respondents to assume that all omitted 

attributes were identical across alternatives.   

The choice experiment included the following attributes: purchase price; range; 

refuel/recharge time; operating cost; maintenance cost; acceleration; speed; license 

requirement; and sales tax.  We based the selection of these attributes on discussions with 

Vietnamese riders and consultation with experts at Hanoi University of Transport and 

Communications, as well as a review of results from stated preference studies on the 

demand for motorcycles and e-scooters (Chiu and Tzeng 1999; Tuan and Shimizu 2005).  

The levels of the attributes reflect the existing technologies, costs and policies in Hanoi in 

2008, as well as potential advancements in e-scooter technology and alternative economic 

and policy scenarios.   

At the time of the survey the sales tax rate on gasoline motorcycles and e-scooters 

was 10% of the purchase price. Gasoline motorcycle riders required a driver’s license, 

while e-scooter riders did not. We obtained vehicle performance information for gasoline 

and e-scooters from literature (Cherry and He 2010), pre-survey GPS-based vehicle 

performance (speed and acceleration) studies and advertised ranges of various vehicle 

types. We estimated operating costs based on advertised and measured fuel economy 

(Cherry et al. 2009; Meszler 2007) and fuel cost rates (VND 20,000/liter gasoline, VND 

1,200/kWh electricity) at the time of the survey.
4
  We estimated maintenance cost 

attributes through surveys of routine maintenance for motorcycles (i.e. oil changes and 

routine part replacement) and from the cost of replacement batteries for e-scooters (based 

                                                 

 
4
 VND – Vietnamese dong.  16,500 VND/USD (July 2008). 
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on 2007 prices for lead acid and lithium ion batteries in-use on e-scooters in China) 

(Weinert, Burke et al. 2007).  Table 1.1 shows the levels for each experimental attribute. 

Given the information on the levels of the attributes for the three alternatives, 

respondents indicated the vehicle they would prefer to purchase.
5
  Figure 1.1 presents an 

example of a choice question from the survey.  Different choice questions reflect 

different combinations of attribute levels for the three alternatives.  The full factorial  

                                                 

 
5
 A “no purchase” option was not included in the choice set.  This decision was based on a filter question in 

the survey which indicated that a large proportion of the sample planned to purchase a two-wheeled 

motorized vehicle in the next 5 years, and was therefore considered to be in the market. 
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Table 1.1 Levels of experimental attributes 

Attribute Standard Gas Motorcycle Large Gas Motorcycle Electric Scooter 

Price (millions of VND) 

 

10 10, 15, 30 8, 12, 16 

Range (km) 

 

100 200 60, 120, 200 

Refuel/recharge time (min.) 

 

5 10 10, 15, 30, 360 

Operating cost (VND/100 km) 

 

30000 20000, 30000, 40000 2500, 5000, 7500 

Maintenance cost (VND/month) 

 

20000 20000 70000, 100000, 140000 

Acceleration 

 

0-40 km/hr in 10 sec. – 20%, 0%, + 20% – 20%, 0%, + 20% 

Speed (km/hr) 80 

 

60, 80, 100 40, 50, 60 

License requirement Yes 

 

Yes Yes, No 

Sales tax (millions of VND) 0, 1.4, 2.8 0, 1.4, 2.8 0, 1.4, 2.8 
(1) VND – Vietnamese dong.  16,500 VND/USD (July 2008). 
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Figure 1.1 Sample choice question 
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design including all combinations of attribute levels consists of 3
13

*2*4 unique choice 

questions.  In order to obtain a manageable number of choice questions we used %mktex 

in SAS to generate an orthogonal (100% D-efficiency) main effects design consisting of 

seventy-two choice questions, which we then divided into twelve blocks of six using 

%mktblock. We presented each respondent with one block (i.e., each respondent faced 

six choice questions). 

  

1.3 The Survey 

 

We administered the survey to households in Hanoi City in July 2008.  In order to 

obtain a sample we stratified the city by 14 districts and sampled randomly within each 

stratum.
6
  We randomly distributed survey versions among a team of interviewers from 

Hanoi University of Transport and Communications who then administered the survey 

through in-person interviews conducted with a representative from each household.  The 

interviewers presented each respondent with a small gift for participating in the survey, 

and fewer than five percent of visited households refused to participate.  We surveyed a 

total of 400 households, yielding 2400 cases (i.e. 400 respondents*6 choice questions per 

respondent = 2400 cases). 

The survey consists of three sections, which the interviewers administered 

sequentially as follows. In the first section, the interviewer provided the respondent, 

according to a script, an overview of the survey and description of an e-scooter, 

                                                 

 
6
 The sampling scheme was based on Nguyen (2007). 
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instructions for the choice questions and an example of a choice question.  In the second 

section respondents answered the six choice questions. The final section gathered 

information on socioeconomic and demographic characteristics, and on household 

motorcycle ownership, use, and purchase plans.  Table 1.2 presents characteristics of the 

sampled households. 

      

1.4 Model Specification 

 

We estimated respondent preferences through mixed logit models, which 

accommodate preference heterogeneity by allowing some of the parameters for the 

observed attributes to be randomly distributed across individuals.  Often cited advantages 

of the mixed logit model are that it allows for correlation and heteroskedasticity across 

alternatives, and relaxes the independence from irrelevant alternatives assumption of the 

standard conditional logit model (Brownstone and Train 1999; Hensher and Greene 2003; 

Revelt and Train 1998; Train 1998).   

Let the utility for individual i associated with alternative j be written as: 

                                
              

             (1.1) 

The variables           and           are indicator variables for the e-scooter and large 

motorcycle, respectively, and    and    are associated alternative-specific constants 

(standard motorcycle is omitted);       is a vector of the attributes in Table 1.1, and      is 

a vector of interactions between individual-specific characteristics and the e-scooter 

indicator variable;     and   are parameter vectors associated with      and     ,  
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Table 1.2 Characteristics of the sampled households 

Variable  Mean or percent 

Gender of respondent (n=395)   

Percent female  45.82 

   

Age of respondent (years) (n=381)  41.33 

   

Education of respondent (n=382)   

Percent high school or lower  61.26 

Percent bachelor’s degree  34.82 

Percent graduate degree  3.93 

   

Household size (members) (n=397)  4.07 

   

Household vehicles (number owned) (n=400)   

Total vehicles  2.70 

Motorcycles  1.88 

Bicycles  0.71 

Cars  0.08 

E-scooters  0.04 

Trucks  0.01 

   

Household income (millions VND/month) (n=399)   

Percent < 3  16.79 

Percent 3-6   40.35 

Percent 6-9   23.56 

Percent 9-20  16.04 

Percent > 20  3.26 
(1) Total number of households interviewed = 400. 

(2)  n is the number of households responding to each item. 
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respectively;     is a vector of normal random variables for individual i with mean 0 and 

covariance matrix I;      is a subvector of      containing attributes whose parameters are 

specified as random; and   is a vector of standard deviations of the random parameters;  

     is a mean zero random term distributed i.i.d. Type I extreme value.  

 Denote the deterministic component of (1.1) as: 

                                
             (1.2) 

Then following Greene’s (2002) exposition, the probability that individual i chooses 

alternative j conditional on    is formulated as: 

        
       

       

        
        

   

 
(1.3) 

The vector of normal random variables,    , represents unobserved randomly distributed 

heterogeneity in preferences for the attributes in     .  Because    is unobservable, it must 

be integrated out in order to obtain the unconditional probability, which is: 

                      
(1.4) 

where       denotes the density of   .  Since (1.4) does not have a closed form, this 

probability is simulated by calculating (1.3) for R draws of   , where each draw of    is 

denoted     , and then averaging these R conditional probabilities.  Writing the simulated 

probability of each individual’s observed choice as: 

       
 

 
 

       
         

        
          

   

 

   
 

(1.5) 

the simulated log-likelihood is given by: 
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(1.6) 

The estimation of the model parameters is executed by maximizing (1.6) with respect to 

  ,   ,  ,  , and  . 

In order to specify the random parameters, we began by estimating a model in which 

we allowed all parameters to be random except for the parameter on price.
7
  We then 

tested down from this model using Wald tests for joint significance of the estimated 

standard deviations. Based on this testing, we held constant the parameters on range, 

refuel/recharge time, maintenance cost, and faster acceleration (in addition to the 

parameter on price) in the final specification.
8
  

Out of 2400 cases obtained by our household survey, 2236 cases did not have missing 

values for the specified model, and we used these cases in the estimation.  Table 1.3 

presents descriptions of the explanatory variables.  We effects coded the attributes 

acceleration and license requirement, and treated all other attributes from Table 1.1 as 

continuous variables.  Effects coding of acceleration resulted in two variables, one to 

indicate 20% faster acceleration than a standard motorcycle, and one to indicate 20% 

slower acceleration than a standard motorcycle.  We scaled operating cost and 

maintenance cost to thousands of VND/100 km and tens of thousands of VND/month, 

respectively.  We constructed sampling weights for each stratum and included these in 

the estimation.  We accounted for correlation across the six choice scenarios faced by an 

                                                 

 
7
 Assuming a fixed price coefficient has been a common practice in the estimation of random utility 

models, as allowing a random price coefficient can lead to identification issues and unrealistic marginal 

willingness to pay distributions (Scarpa et al. 2008). 
8
 Estimating the model in which all parameters are random except for price, a Wald test of the hypothesis 

that the estimated standard deviations of the parameters on range, refuel/recharge time, maintenance cost, 

and faster acceleration are jointly equal to zero has p = 0.272. 
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Table 1.3 Description of explanatory variables 

Variable Description 
Random 

Parameter 

   

Price  Purchase price of the vehicle (millions of VND)  

Range  Distance that can be traveled on a full tank of gasoline or a full charge (km)  

Refuel/recharge 

time 

Time required to refill an empty gasoline tank or to recharge a battery from zero charge 

(min.) 

 

Operating cost Direct cost of fuel or electricity for operation of the vehicle (Thousands of VND/100 km) X 

Maintenance cost  Direct cost of routine maintenance (Tens of thousands of VND/month)  

Faster acceleration 20% faster than a standard motorcycle’s acceleration  

Slower acceleration
 

20% slower than a standard motorcycle’s acceleration  X 

Speed
 
 Top speed of the vehicle (km/hr) X 

License 

requirement
 

= 1 if a license if required to legally operate the vehicle, -1 otherwise 
X 

Sales tax  Sales tax paid in addition to purchase price (millions of VND) X 

Escooter = 1 if the vehicle is an e-scooter, 0 otherwise X 

Lrg moto = 1 if the vehicle is a large motorcycle, 0 otherwise X 

Income x Escooter = household income in millions of VND/month if Escoot = 1, 0 otherwise  

College x Escooter =1 if the respondent has a college degree and Escoot = 1, 0 otherwise  

Female x Escooter =1 if the respondent is female and Escoot = 1, 0 otherwise  
(1) Acceleration of the standard motorcycle presented in the choice experiment was 0-40 km/hr in 10 sec.  Faster acceleration and slower acceleration 

are interpreted relative to this omitted category. 

(2) X indicates a random parameter was specified for the associated variable 
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individual by holding the vector of random draws the same across choice scenarios for a 

given respondent.  Finally, we estimated the model using 1000 Halton draws, and 

computed heteroskedasticity-robust standard errors to account for noise introduced 

through the simulations. 

 

1.5 Estimation 

 

Table 1.4 presents results from estimation of the model.  All of the coefficients for the 

attributes in Table 1.1 are of the expected signs.  An increase in price, 

refueling/recharging time, operating cost, maintenance cost, or sales tax, having slower 

acceleration than a standard gas motorcycle, or having a license requirement, negatively 

affects the relative utility associated with a vehicle.  An increase in range or speed, or 

having faster acceleration than a standard gas motorcycle has a positive effect.  The 

effects of price, refueling/recharging time, operating cost, maintenance cost, faster 

acceleration, slower acceleration, speed, and sales tax, are all significant at the 1% level, 

while the effect of a license requirement is significant at the 10% level.  Negative signs 

for the e-scooter and large motorcycle alternative-specific constants indicate that all else 

equal, these vehicles are associated with lower utility than a standard motorcycle; 

however, only the  alternative-specific constant for the large motorcycle is significantly 

different from zero. 

The estimated standard deviations of the random parameters for the e-scooter and 

large motorcycle alternative-specific constants, operating cost, and sales tax, are  

 



 

 18 

Table 1.4 Mixed logit model 

 Estimate Std. err. p-value 

    

Variable    

    

Price -0.165 0.016 0.000 

Range 0.004 0.001 0.001 

Refuel/recharge time -0.002 0.000 0.000 

Operating cost -0.031 0.009 0.001 

Maintenance cost -0.062 0.020 0.002 

Faster acceleration 0.228 0.068 0.001 

Slower acceleration -0.243 0.070 0.001 

Speed 0.017 0.003 0.000 

License requirement -0.120 0.065 0.064 

Sales tax -0.271 0.039 0.000 

Escooter -0.357 0.352 0.311 

Lrg moto -0.467 0.199 0.019 

Income x Escooter -0.042 0.028 0.142 

College x Escooter 0.497 0.249 0.046 

Female x Escooter 0.250 0.207 0.228 

    

Std. dev. Of random parameter    

    

Operating cost 0.028 0.010 0.004 

Slower acceleration 0.245 0.147 0.096 

Speed 0.012 0.008 0.130 

License requirement 0.223 0.128 0.081 

Sales tax 0.308 0.069 0.000 

Escooter 0.863 0.262 0.001 

Lrg moto 2.576 0.239 0.000 

    

Model statistics    

    

N 2236   

Log-likelihood at start values -2242.447   

Log-likelihood at convergence -1964.631   

McFadden pseudo R
2 0.200   
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significant at the 1% level, indicating significant heterogeneity in preferences for these 

attributes. The standard deviations of the random parameters for slower acceleration and 

license requirement are marginally significant, while the standard deviation of the speed 

coefficient is not significant.  Overall, a Wald test rejects the hypothesis that the 

estimated standard deviations of the random parameters are jointly equal to zero at the 

1% level (p < 0.001). 

Turning to the preference heterogeneity modeled through interactions between 

individual-specific characteristics and the e-scooter alternative-specific constant, we find 

that the directions of the effects are as anticipated: an increase in household income is 

associated with a decrease in the relative utility derived from an e-scooter, although the 

effect is not statistically significant;  the relative utility of e-scooter purchase is higher for 

those with a college degree compared with those without a college degree, statistically 

significant at the 5% level; and females associate higher relative utility with e-scooters 

than males, although this effect is not statistically significant.  The effect of college is 

consistent with findings in other stated-choice experiments on electric vehicles Chiu and 

Tzeng (1999) found that a college degree had a significant positive effect on the purchase 

of an electric two-wheeler, and Brownstone and Train (1999) found that having some 

college had a significant positive effect on purchasing an electric car. 

 

1.6 Marginal Willingness to Pay Estimates and Tax Effects 

 

In order to provide meaningful interpretations of the estimated parameters, we 

calculated marginal willingness to pay (MWTP) estimates.  Given an additively separable 
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indirect utility function, the estimated parameters represent marginal utilities.  The 

coefficient on price can thus be interpreted as the marginal utility of income.  Multiplying 

another attribute’s coefficient by the negative inverse of the price coefficient yields the 

marginal rate of substitution between that attribute and the price, i.e. the MWTP for that 

attribute (Holmes and Adamowicz 2003).  Following this procedure and using the 

parameter estimates from the mixed logit model, we computed the MWTP and standard 

errors based on the delta method for selected attributes and present these in Table 1.5. 

The MWTP for the sales tax is -1.64 million VND, indicating a difference in the effects 

of price and sales tax on the purchase decision.  The purchase price of a vehicle would 

have to be reduced by 1.64 million VND in order for a respondent to incur a one million 

VND increase in sales tax and have her utility remain unchanged; or a respondent would 

be willing to pay 1.64 million VND extra on the price of a vehicle, in order to avoid a one 

million VND increase in the sales tax.  We performed a Wald test (Table 1.5) to examine 

whether this difference between the sales tax and price coefficients is significantly 

different from zero.  We reject the hypothesis of equality between the price and sales tax 

coefficients at the 1% level, indicating that the sales tax has a significantly stronger effect 

on the purchase of a two-wheeler than does the price of the vehicle, a that result we 

discuss further in the conclusion.  

In order to investigate the effect of sales tax on the e-scooter market share relative to 

other attributes, we extended the analysis by calculating marginal rates of substitution 

between the other attributes and the sales tax.  For each attribute, we then used the 

marginal rate of substitution to equate a decrease in e-scooter sales tax with a change in 

the attribute in terms of the effect on the e-scooter market share. For the attributes that we  
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Table 1.5 Marginal willingness to pay estimates 

 
Estimate  

(millions VND) 
Std. err. p-value 

    

Attribute    

    

Range 0.022 0.006 0.001 

Refuel/recharge time -0.009 0.003 0.001 

Operating cost -0.187 0.055 0.001 

Maintenance cost -0.375 0.121 0.002 

Faster acceleration 1.376 0.422 0.001 

Slower acceleration -1.469 0.429 0.001 

Speed 0.100 0.018 0.000 

License requirement -0.727 0.396 0.066 

Sales tax -1.640 0.255 0.000 

Income x Escooter -0.253 0.176 0.150 

College x Escooter 3.004 1.505 0.046 

Female x Escooter 1.510 1.245 0.225 

    

Sales tax versus price    

    

βSales Tax – βPrice -0.106 0.039 0.007 
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treated as continuous, we determined the change in each attribute that would yield an 

equivalent change in the e-scooter market share as would eliminating the e-scooter sales 

tax. Taking the price of the e-scooter as 12 million VND (the midpoint of the range of e-

scooter prices used in the experiment) and using the 10% sales tax rate that prevailed in 

2008, eliminating the e-scooter sales tax implies a reduction in sales tax of 1.2 million 

VND.  Thus, for each continuous attribute we calculated the equivalent of a 1.2 million 

VND decrease in e-scooter sales tax.   

For categorical variables acceleration and license requirement, we calculated the sales 

tax change that would yield the same change in e-scooter market share as a discrete 

change in the attribute.  In Hanoi in 2008, the status quo was that e-scooters had about 

20% slower acceleration than standard gasoline motorcycles, so using this as our baseline 

we calculated the sales tax decrease that would have an equivalent effect on e-scooter 

demand as putting the e-scooter on par with the standard motorcycle in terms of 

acceleration.  For license requirement, since e-scooters did not require a license, we 

examined the sales tax increase on e-scooters that would generate the same reduction in 

the e-scooter market share as implementing an e-scooter license requirement.  These 

comparisons are reported in Table 1.6. 

Examining these comparisons, we see that eliminating the e-scooter sales tax of 1.2 

million VND would generate the same increase in e-scooter market share as would 

increasing the e-scooter range by about 90 km, reducing its recharge time by about 3.5 

hours, reducing its operating cost by about 10500 VND/100 km, reducing its monthly 

maintenance cost by about 52500 VND, or increasing its speed by about 20 km/hr.  

Increasing the e-scooter acceleration from 20% slower than a standard motorcycle to the 
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Table 1.6 Equivalencies in terms of effect on e-scooter market share 

Attribute Change in e-scooter attribute Equivalent change in e-scooter sales tax 

   

Range (km) +90.4 –1.2 million VND 

Refuel/recharge time (min.) –208.2 –1.2 million VND 

Operating cost (VND/100 km) –10534.1 –1.2 million VND 

Maintenance cost (VND/month) –52455.6 –1.2 million VND 

Acceleration 20% slower than standard motorcycle  

to the same as standard motorcycle –0.9 million VND 

Speed (km/hr) +19.7 –1.2 million VND 

License requirement no license required to license required +0.4 million VND 
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same as a standard motorcycle would yield the same increase in e-scooter market share as 

would a sales tax decrease of about 0.9 million VND, while requiring an e-scooter license 

would cause a decrease in e-scooter market share equivalent to that caused by an 

approximate sales tax increase of 0.4 million VND. 

While these comparisons demonstrate the individual tradeoffs between e-scooter sales 

tax and unilateral changes in the other e-scooter attributes in terms of effects on e-scooter 

market share, from a policy perspective they do not capture the entire picture.  

Eliminating the e-scooter sales tax is only part of a policy to encourage adoption of e-

scooters, as in addition to eliminating the e-scooter sales tax, the sales tax rates on 

gasoline motorcycles could be increased.  Furthermore, unilateral changes in the other e-

scooter attributes are unlikely.  For example, reductions in recharging time, increases in 

range, and improvements in speed and acceleration are likely to occur simultaneously as 

technology improves and are likely to be associated with increases in price, operating 

cost and maintenance cost.  In the next section therefore, we present market shares for e-

scooters and for standard and large gasoline motorcycles under several scenarios that 

involve different sales tax rates on the three vehicles, as well as different combinations of 

fuel prices and states of e-scooter technology. 

 

1.7 Market Shares 

 

We used the estimated mixed logit model to forecast market shares for motorized 

two-wheelers under different scenarios.  We examined two different states of e-scooter 

technology: baseline and cutting-edge.  We combined each state of e-scooter technology 
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with both baseline and high gasoline prices, and combined each combination of e-scooter 

technology and gasoline price with six different sales tax scenarios, for a total of 36 

scenarios.  We calculated market shares for the e-scooter and for the standard and large 

gasoline motorcycles under each of these scenarios.  The scenario considered to be the 

baseline reflects prices, costs, sales tax rates and technologies prevailing in Hanoi in 

2008.  Under baseline gasoline prices, the operating cost was set at 40,000 VND/100 km, 

based on a fuel price of 20,000 VND per liter (the approximate price of gasoline in Hanoi 

in late summer of 2008).    Table 1.7 presents the attribute levels of the vehicles for the 

baseline scenario.  In all of the scenarios, the interactions between the individual-specific 

characteristics and the e-scooter alternative-specific constant were evaluated at the means 

of the individual-specific characteristics obtained from the full sample.   

The cutting-edge state of e-scooter technology involves significant enhancements in 

range, recharge time, acceleration and speed.  Range increases from 60 km to 200 km, 

recharging time falls from 360 min to 10 min, acceleration increases from 20% slower 

than a standard motorcycle to the same as a standard motorcycle, and speed increases 

from 40 km/hr to 60 km/hr.  These improvements are associated with an increase in the e-

scooter purchase price from 12 million VND to 16 million VND, an increase in operating 

cost from 5000 VND/100 km to 7500 VND/100 km to account for higher energy 

requirements as well as higher capital costs of rapid charging devices, and an increase in 

maintenance cost from 100000 VND/month to 140000 VND/month to reflect the greater 

expense of an enhanced battery. 
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Table 1.7 Attribute levels in the baseline scenario 

Attribute Standard  

Motorcycle 

Large  

Motorcycle 

Electric  

Scooter 

Price (millions of VND) 

 

10 15 12 

Range (km) 

 

100 200 60 

Refuel/recharge time (min.) 

 

5 10 360 

Operating cost (VND/100 km) 

 

40000 40000 5000 

Maintenance cost (VND/month) 

 

20000 20000 100000 

Acceleration 

 

0-40 km/hr in 10 sec. + 20% – 20% 

Speed (km/hr) 80 80 40 

License requirement Yes Yes No 
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   The high gasoline price scenario involves an increase in the operating cost of standard 

and large gasoline motorcycles from 40000 VND/100 km to 52000 VND/100 km, 

reflecting a 30% increase in the price of gasoline.  For the sales tax scenarios we examine 

two different rates of e-scooter tax: 10% and 0%, and we combine these with three 

different scenarios of sales tax rates for the standard and large gasoline motorcycles: 10% 

on both standard and large motorcycles; 10% on the standard motorcycle and 20% on the 

large motorcycle; and 20% on both standard and large motorcycles.  We present the 

estimated market shares and standard errors for baseline and high gasoline prices 

combined with the sales tax scenarios in Table 1.8 for baseline e-scooter technology and 

in Table 1.9 for cutting-edge e-scooter technology. 

First, examining the case of baseline e-scooter technology in Table 1.8, the market 

shares for the baseline scenario are given in the first row of market shares.  Under the 

baseline, e-scooters have a market share of about 13%, while standard and large 

motorcycles have shares of about 61% and 26%, respectively.  Maintaining the 10% sales 

tax rates on all vehicles while increasing to the high gasoline price results in e-scooter 

market share of about 18%; alternatively, eliminating the e-scooter sales tax and 

maintaining the baseline gasoline price yields approximately the same e-scooter market 

share of 18%.  Starting at the baseline gasoline price and baseline technology with 10% 

tax rates on all vehicles then, a 30% increase in the price of gasoline has approximately 

the same effect on the e-scooter market share as eliminating the e-scooter sales tax.   

However, increasing the sales tax rates on the standard and large motorcycles to 20% in 

addition to eliminating the e-scooter sales tax still under the baseline gasoline price  
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Table 1.8 Market shares under baseline e-scooter technology 

Scenario Market Shares 

Standard Gas 

Motorcycle 

Sales Tax 

Large Gas 

Motorcycle 

Sales Tax 

Standard Gas 

Motorcycle 

Large Gas 

Motorcycle 

Electric 

Scooter 

     

Baseline Gasoline Price    

10% e-scooter sales tax    

10% 10% 0.610 (0.034) 0.257 (0.036) 0.133 (0.026) 

10% 20% 0.668 (0.034) 0.187 (0.030) 0.145 (0.027) 

20% 20% 0.605 (0.034) 0.222 (0.033) 0.173 (0.031) 

     

No e-scooter sales tax    

10% 10% 0.580 (0.034) 0.244 (0.035) 0.175 (0.031) 

10% 20% 0.632 (0.034) 0.177 (0.029) 0.191 (0.033) 

20% 20% 0.567 (0.035) 0.208 (0.032) 0.225 (0.038) 

     

High Gasoline Price    

10% e-scooter sales tax    

10% 10% 0.576 (0.038) 0.242 (0.036) 0.182 (0.043) 

10% 20% 0.627 (0.042) 0.176 (0.030) 0.198 (0.045) 

20% 20% 0.561 (0.041) 0.206 (0.033) 0.233 (0.050) 

     

No e-scooter sales tax    

10% 10% 0.538 (0.041) 0.226 (0.036) 0.235 (0.051) 

10% 20% 0.582 (0.044) 0.163 (0.029) 0.255 (0.053) 

20% 20% 0.515 (0.045) 0.189 (0.033) 0.296 (0.059) 
(1) Standard errors are in parentheses. 

  



 

 29 

Table 1.9 Market shares under cutting-edge e-scooter technology 

Scenario Market Shares 

Standard Gas 

Motorcycle 

Sales Tax 

Large Gas 

Motorcycle 

Sales Tax 

Standard Gas 

Motorcycle 

Large Gas 

Motorcycle 

Electric 

Scooter 

     

Baseline Gasoline Price    

10% e-scooter sales tax    

10% 10% 0.544 (0.034) 0.229 (0.033) 0.228 (0.035) 

10% 20% 0.589 (0.036) 0.165 (0.027) 0.247 (0.036) 

20% 20% 0.522 (0.035) 0.192 (0.030) 0.287 (0.040) 

     

No e-scooter sales tax    

10% 10% 0.500 (0.035) 0.210 (0.032) 0.290 (0.041) 

10% 20% 0.538 (0.036) 0.151 (0.026) 0.312 (0.042) 

20% 20% 0.470 (0.037) 0.173 (0.029) 0.358 (0.047) 

     

High Gasoline Price    

10% e-scooter sales tax    

10% 10% 0.493 (0.042) 0.208 (0.034) 0.299 (0.054) 

10% 20% 0.530 (0.047) 0.148 (0.027) 0.322 (0.055) 

20% 20% 0.462 (0.045) 0.170 (0.030) 0.368 (0.059) 

     

No e-scooter sales tax    

10% 10% 0.442 (0.044) 0.186 (0.033) 0.372 (0.060) 

10% 20% 0.472 (0.048) 0.132 (0.026) 0.396 (0.060) 

20% 20% 0.405 (0.047) 0.149 (0.029) 0.446 (0.064) 
(1) Standard errors are in parentheses. 
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increases the e-scooter market share to about 23%.  This same set of tax rates under a 

high gasoline price increases the e-scooter market share to about 30%. 

Now consider cutting edge e-scooter technology in Table 1.9.  Under the baseline 

gasoline price and 10% sales tax on all vehicles, moving from baseline to cutting-edge 

technology increases e-scooter market share from about 13% to about 23%.  Under the 

high gasoline price scenario with all tax rates still at 10%, moving to cutting-edge e-

scooter technology increases e-scooter market share from about 18% to about 30%.  

Starting at baseline e-scooter technology with 10% tax rates on all vehicles then, 

improving to cutting-edge e-scooter technology would have about the same effect on the 

e-scooter market share as eliminating the e-scooter sales tax and increasing the sales tax 

rates on the standard and large motorcycles to 20%, under either gasoline price scenario. 

Examining the market shares under the various scenarios it is clear that policies based 

on sales tax rates show the potential for a powerful effect on the market share of e-

scooters, especially when the use of an e-scooter sales tax waiver is combined with 

increases in the sales tax rates on gasoline motorcycles.  Moving from the baseline 

scenario to a scenario with high gasoline price, cutting-edge e-scooter technology, and 

with no e-scooter sales tax and 20% sales tax rates on standard and large motorcycles, the 

e-scooter market share increases from about 13% to about 45%.  While this scenario has 

the highest forecasted market share for e-scooters, it is not evident that it offers the 

largest reductions in urban air pollution.  For example, a policy that waived the e-scooter 

sales tax and increased the sales tax on large motorcycles to 20%, but instead left the 

sales tax rate on standard motorcycles at 10%, would forecast a lower e-scooter share, but 

would also have a lower share of large gasoline motorcycles.  An analysis of 
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environmental impacts is therefore required in order to better understand the effects of 

the various sales tax policies and resulting market shares on urban air pollution in Hanoi. 

 

1.8 Implied Discount Rate for Maintenance and Fuel Savings 

 

The cost structure of owning and operating an electric vehicle is different than a 

gasoline vehicle. One of the barriers of owning an electric vehicle is the relatively higher 

purchase and maintenance cost (mostly because of batteries), which is countered by 

lower operating cost over the life of the vehicle (because of lower fuel cost). Indeed, the 

total cost of ownership is lower for most electric vehicles, compared to their gasoline 

counterparts. The same is true of electric scooters compared to gasoline motorcycles. 

WTP for these cost differences varies. Vehicle purchasers have been shown to discount 

future benefits of lower operating costs (fuel economy) at a significantly higher rate than 

return on capital (14-42%) (Gallagher and Muehlegger 2011). Still, there is little 

consensus on how consumers value and pay for potential increases in fuel economy and 

associated savings in operating cost, potentially because of substantial uncertainty 

surrounding future fuel prices and savings (D. L. Greene 2010).  

In this section, we investigate the potential discount rates of vehicle purchasers by 

analyzing their WTP for differential operating (fuel) costs and maintenance costs. To 

investigate the value of expected future savings, we apply the MWTP to the undiscounted 

savings, to derive the implied discount rate. The discount rate is sensitive to expected 

vehicle lifespan and use. We will address this in sensitivity analysis below. On average, 

we assume a vehicle lifespan of ten years and 5,500 vehicle-km/yr, consistent with travel 
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behavior studies conducted in Hanoi (Schipper et al. 2008). We also assume static fuel 

and maintenance costs for both electric and gasoline vehicles. For expected fuel 

economy, we estimate undiscounted fuel costs of an e-scooter of over 2.75 million VND 

over the life of the vehicle, compared to 22 million VND for gasoline motorcycle, or 350 

VND/km savings. Based on MWTP estimates presented in Table 1.5, we estimate that 

one is willing to spend, on average, 1/3 of the expected savings (6.5 million VND) in 

purchase cost. Assuming these benefits occur evenly over the life of the vehicle implies a 

discount rate of 40%. Similarly, we can estimate an implied discount rate based on a 

gasoline motorcycle maintenance cost of 20,000 VND/month and an e-scooter 

maintenance cost of 100,000 VND/month. Here we assume a ten-year lifespan and 

maintenance costs begin incurring immediately and costs are outlaid at the end of each 

year. In this case, the consumer is willing to substitute 3 million VND in the price of the 

gasoline motorcycle to save 9.6 million VND in lifetime maintenance cost, i.e., the 

consumer is willing to pay 31% of the future maintenance savings resulting in an implied 

discount rate of 45%. If we assume that the maintenance costs do not incur until the end 

of the first year (a reasonable assumption since <1-year old vehicles require little 

maintenance), then the implied discount rate drops to 29%.  

Discount rate of fuel savings is very sensitive to our assumptions, particularly 

expected vehicle life and yearly travel. User expectations of vehicle life, vehicle use, fuel 

costs, and resale value contribute to willingness to pay for future savings. Unfortunately, 

there is little empirical evidence to model these expectations. To test the range of 

discount rates we might observe, we simulated vehicle life (years) and yearly use 

(km/year) [N(10, 1.7) and N(5500, 833), respectively] and estimated the sensitivity of the 
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operating cost discount rate (range 6-75%) on fuel price and vehicle life. Figure 1.2 

shows the distribution of discount rates based on the simulation. Discount rate increases 

as the combination of yearly mileage and vehicle lifespan increase. 

Similarly, we estimate the discount rate, considering expected maintenance cost 

savings over a range of vehicle lifespans. The maintenance cost savings are not sensitive 

to vehicle use, since the variable is expressed in VND/month.  Figure 1.3 shows the range 

of discount rates depending on vehicle lifespan and when maintenance begins. If 

maintenance costs occur in the first year, the discount rate ranges from 31-46%. If we 

assume there are no maintenance costs in the first year, the discount rate ranges from 10-

31%.  

The discount rate estimated by both of these methods is on the same order as other 

studies and is shown to undervalue future operation and maintenance cost savings. There 

are many possible explanations, including myopic consumers who do not consider future 

savings, uncertainty in future savings, and inability to recover expected savings in the 

future resale of the vehicle. Supporting these potential explanations is the high and 

unstable inflation rate experienced by Vietnam in recent years. In 2008 (the year of the 

survey), consumer prices increased by nearly 30%, followed by 2% (2009), and 9% 

(2010), implying high future price uncertainty among consumers. 
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Figure 1.2 Distribution of implicit discount rates for operating cost 

 

 

 

 

 

Figure 1.3 Implicit discount rates for maintenance cost
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1.9 Conclusion 

 

This paper uses a choice experiment to examine the potential for incentives to 

stimulate the adoption of e-scooters in Hanoi, Vietnam, and is the first investigation to 

explicitly estimate the effect of economic incentives for clean alternatives to motorcycles.  

The results of the mixed logit analysis indicate that a sales tax incentive has a powerful 

effect on the purchasing decision of a two-wheeled motorized vehicle, and that used as a 

tool to preferentially treat e-scooters, a tax shows significant promise for stimulating e-

scooter demand.  We find all other vehicle attributes in the experiment to be at least 

marginally significant determinants in the choice of a two-wheeled motorized vehicle, 

including price, range, refuel/recharge time, operating cost, maintenance cost, 

acceleration, speed, and license requirement.  We also find that certain household and 

respondent characteristics affect the choice of an e-scooter.  Having a college degree 

significantly increases an individual’s willingness to pay for an e-scooter. Sales tax 

incentives, e-scooter technological improvements, and increases in gasoline price all 

demonstrate a substantial influence on e-scooter market share.  We estimate that a policy 

combining the elimination of e-scooter sales tax with higher tax rates on gasoline 

motorcycles and enhancements in e-scooter technology will increase e-scooter market 

share substantially. 

Although the results of this study indicate that incentives for e-scooters would 

increase e-scooter adoption in Hanoi, the conclusions regarding market and 

environmental outcomes are subject to limitations.  There are many attributes important 

to the purchase of a motorized two-wheeler beyond those tested in the experiment, and 
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many incentives for stimulating the adoption of e-scooters other than sales taxes.  While 

our finding that the sales tax offers a powerful incentive is consistent with findings in the 

literature on incentives for alternative fuel cars and offers insight as to its relative 

potential, the actual market outcomes associated with implementing a sales tax policy 

depend on many factors outside the scope of our experiment.  Furthermore, while e-

scooters have lower tailpipe emissions than motorcycles, the typical battery used in an e-

scooter is much larger than the battery used in a motorcycle and contains a large amount 

of lead.  The extent to which a modal shift to e-scooters would be beneficial therefore 

depends on how well Hanoi’s solid waste management system is able to accommodate an 

influx of used lead-acid batteries.  Additionally, the benefits associated with the adoption 

of e-scooters are conditional on a substitution away from motorcycles.  To the extent that 

e-scooter adoption comes at the expense of walking, riding bicycles and using public 

transportation, the benefits of stimulating e-scooter adoption could be diminished.   

In the process of investigating the effect of a sales tax incentive on the adoption of e-

scooters we find an interesting result: respondents exhibit a stronger response to sales tax 

than to the purchase price of a vehicle. One might expect individuals to be indifferent 

between a dollar in sales tax and a dollar in price, or if individuals believe that the sales 

tax collected contributes toward the provision of public goods, individuals might even 

prefer a dollar of sales tax to a dollar of purchase price.  However, we observe the 

opposite.   

The result could be context dependent, for example political corruption could make 

individuals wary of taxes.  Or the result could be part of a more general phenomenon.  

The relationship between the price of a good and the value placed on the good is a topic 
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addressed in several fields.  In the marketing literature for example, there are studies that 

examine the notion that price may be used as an indicator of the quality of a product 

(Gardner 1971; Gerstner 1985; Lambert 1972; Monroe 1973).  In neuroeconomics, a 

recent experiment involving wine tasting finds that higher prices for the same wine lead 

individuals to provide higher ratings of flavor and result in increased brain activity in an 

area thought to be associated with pleasure (Plassmann et al. 2008).  In our study, if 

respondents do not treat all unspecified vehicle attributes as constant across alternatives, 

but instead use the price as an indicator of a vehicle’s unobserved quality, then all else 

the same, we would expect respondents to be less deterred by increases in price than 

increases in sales tax.  Unfortunately, we are unable to answer the question of why we see 

the divergence between the effects of sales tax and the price.   

Still, the finding itself is of practical importance for researchers.  A practice 

sometimes used in transportation demand studies is to use the effect of vehicle price as a 

proxy for the effect of a sales tax or vice versa.  For example, Ewing and Sarigollu 

(2000), in their choice experiment study, use the effect of price to infer the effect of a 

sales tax on the demand for alternative fuel vehicles.  Gallagher and Muehlegger (2011) 

using market data on hybrid vehicle sales, use the effect of sales tax to calculate the 

implicit discount rates on fuel cost savings.  In either case, if consumers are more 

responsive to increases in sales tax than purchase price this could lead to distortions.  

Future research should further explore the effects of price and sales tax on vehicle 

purchase, aiming to understand whether differences between the effects are anomalous or 

pervasive and the sources of these differences when they do exist.  An important issue 

related to the difference between the effects of price and sales tax is the determination of 
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which of these effects, in a given study, provides the most accurate estimate of the 

marginal utility of money.  At a minimum, researchers should be mindful of the potential 

for differences in the effects of different payment vehicles when undertaking 

transportation demand studies and interpreting results. 
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CHAPTER 2 :  TAX MECHANISMS FOR THE JOINT REGULATION OF 

POINT AND NONPOINT SOURCE EMISSIONS 

 

 

2.1 Introduction 

 

Point source emissions, such as effluent emanating from the end of a factory pipe, are 

readily measured, and the actions that point sources take to reduce emissions (e.g. 

installing a filtration device) are effective with a relative degree of certainty.  Nonpoint 

source emissions on the other hand, such as runoff from a farm, cannot be observed or 

readily measured without prohibitive cost. In addition, factors that help determine 

nonpoint emissions, such as soil type and rainfall, are subject to randomness and thus 

render emissions random.   For these reasons, nonpoint source pollution is especially 

challenging for regulators.  

In U.S. watersheds, nonpoint source pollution is a leading concern and for this reason 

has received a great deal of attention from both regulators and economists.  Without 

being able to observe emissions, traditional economic mechanisms cannot be applied to 

regulate nonpoint sources.  In part because of this, the approach has been to encourage 

Best Management Practices and to implement voluntary programs (e.g. Conservation 

Reserve Program), without pursuing direct regulation. In an attempt to encourage more 

pollution reductions from nonpoint sources and to benefit from their (perceived) lower 

costs of abatement, many watersheds  have implemented water quality trading programs 

that allow for trading of emissions rights between point and nonpoint sources.   



 

 40 

Indeed water quality trading is the current policy focus for addressing pollution in 

U.S. watersheds. Thus far, these water quality trading programs have had little practical 

success.  Few trades have occurred relative to the number of programs that have been 

established, and nonpoint sources are reluctant to participate. Therefore, there is a clear 

need to explore alternative mechanisms. 

Ambient taxes have demonstrated the ability to yield near efficient levels of 

emissions reductions in controlled laboratory experiments on nonpoint pollution 

regulation (Cochard et al. 2005; Suter et al. 2008; Vossler et al. 2006).  Whereas water 

quality trading is subject to market frictions such as those that result from high 

transaction costs, abatement cost uncertainty, poorly constructed trading institutions and 

market power, taxes provide clear price signals to compare with emission reduction costs. 

Segerson (1988) first introduced the ambient tax, following Holmstrom’s (1982) work on 

incentivizing individual effort based on observation of group output. In particular, 

Segerson’s (1988) ambient tax charges every nonpoint source based on the total ambient 

level of pollution measured in some environmental medium, in lieu of observing and 

taxing individual emissions.  In response to the ambient tax, the nonpoint sources 

theoretically have the incentive to equate, at the margin, the cost of reducing emissions 

with the expected decrease in the tax payment from reducing emissions. The appeal of 

the ambient mechanism is that nonpoint sources can be incentivized to abate at desired 

levels without the regulator observing their individual emissions or abatement. 

Much of the work on nonpoint regulation following Segerson (1988) focuses on the 

performance of ambient taxes, and has led to important refinements.  For example, Cabe 

and Herriges (1992) examine a setting where the regulator and polluters have asymmetric 
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expectations over the randomness of nonpoint pollution.   Horan, Shortle and Abler 

(2002) study ambient taxes in the presence of asymmetric expectations, multiple 

pollution controls, and risk aversion.  Other papers examine the consequences of relaxing 

the distinction between point and nonpoint sources by making nonpoint source emissions 

observable, at least to some extent, but at a cost (Farzin and Kaplan 2004; Millock et al. 

2002; Xepapadeas 1995).  Motivated by the purported substantial regulatory costs of 

Segerson’s (1988) mechanism, variants of the ambient tax have been proposed to reduce 

this burden through state-dependent taxes (Horan et al. 2002, 1998), damage-based taxes 

(Hansen 1998), and a variance-based tax (Hansen 2002).  However, one important 

component of the regulatory setting that has yet to be addressed in the nonpoint tax 

literature is the role of point sources.  

In reality, many water quality-impaired watersheds include both point and nonpoint 

pollution sources, and in such watersheds differences between polluter types have 

implications about the use of ambient taxes.  In contrast to the literature on ambient taxes, 

several papers that focus on water quality trading mechanisms (e.g. cap-and-trade; 

baseline-and-credit) have explicitly modeled both polluter types.  Findings in the 

literature on point-nonpoint trading demonstrate that, based on the uncertainty of 

nonpoint emissions, the optimal trading ratio between otherwise identical point and 

nonpoint sources will not in general be equal to one (Hennessy and Feng 2008; Horan 

and Shortle 2005). This suggests that there are inherently different values associated with 

emissions reductions from the two polluter types.   

This paper is the first to explicitly examine the joint regulation of point and nonpoint 

sources using tax mechanisms. We begin with a simple model of point-nonpoint 
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pollution, and use this framework to compare three tax regulations, and consider three 

regulatory objectives. The first mechanism taxes point sources on their observable 

emissions, and taxes nonpoint sources on ambient pollution using a simplified version of 

Segerson’s (1988) ambient tax.  The second instrument uses an ambient tax to regulate 

both point and nonpoint sources.  The third is a version of Hansen’s (1998) damage tax 

under which both source types are taxed based on total damages associated with 

measured ambient pollution. The first regulatory objective is (expected) social efficiency, 

which is practical when the social damages from pollution are known. The other two 

objectives are consistent with a cost-effectiveness framework, and include: meeting an 

ambient target “on average”, and meeting an ambient target with a known probability. 

 

2.2 A Point-Nonpoint Pollution Model 

 

Consider a simple model of a watershed that includes   point sources (subscript k) 

and   nonpoint sources (subscript i).  A primary metric of regulatory interest is the level 

of a key pollutant measured at a monitoring point in the watershed.  Define the ambient 

pollution function as      
 
       

 
   , where:   is the ambient pollution level; 

        and             denote point and nonpoint source ambient contributions, 

respectively;     and    denote each point and nonpoint source’s emissions, measured in 

units of the pollutant; and coefficients    and       , commonly referred to as “transfer 

coefficients”,  indicate the proportion of emissions that are discharged as ambient 

contributions.  To be clear, the ambient pollution function maps “emissions” originating 

from the pollution sources, via the transfer coefficients, into a measurable level of 
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ambient pollution at a monitoring point. Note that while the point source transfer 

coefficients are assumed to be site-specific constants, the nonpoint transfer coefficients 

depend on site-specific random variables, the   .
9
   

In addition to observing the ambient level of pollution, it is assumed that the regulator 

is able to observe each point source’s emissions, but is unable to observe nonpoint 

emissions, and is unable to infer ambient contributions from the ambient level of 

pollution. Point and nonpoint sources can reduce their emissions at increasing cost, so 

that for k and i there are cost functions        and       , respectively, that are decreasing 

and convex in emissions (     and      ).  Finally, it is assumed that social damages 

     from watershed pollution are an increasing and strictly convex function of the 

ambient level of pollution at the monitoring point (     and      ). 

 

2.3 Achieving Optimal Emissions with Point-Nonpoint Tax Mechanisms 

 

Within this framework, we can define the social planner’s problem as one of 

determining the emissions levels   
  and   

  that minimize the sum of firms’ costs and 

expected social damages: 

   
     

       

 

   

                  

 

   

          

 

   

  

 

   

 
(2.1) 

                                                 

 
9
 The key feature of our model, which is present in other models on point-nonpoint trading (e.g. Horan and 

Shortle 2005), is that there is an additional source of uncertainty underlying nonpoint pollution. For a 

slightly richer model, we could assume randomness in the mapping of point source emissions to ambient 

concentrations, and two sources of randomness for nonpoint sources – in the mapping of emissions to 

ambient concentration, as well as in how firm actions translate into emissions. However, doing so adds 

additional complexity while leading to similar theoretical implications regarding relative tax rates. 
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Assuming an interior solution, the first-order necessary conditions are (2.2) and (2.3). 

      
                             (2.2) 

      
                                 (2.3) 

These imply the familiar result that optimal emissions must, for each source, equate the 

marginal cost of emissions with the expected marginal benefit (i.e. negative of marginal 

damage) of emissions.   

We now compare the optimal emissions across types.  Rearranging, and dividing 

equation (2.3) by equation (2.2), allows us to examine the ratio of marginal costs between 

a particular nonpoint source and a point source:  

      
  

      
  
 
                  

           
 
         

  
 

(2.4) 

For purpose of comparison, we can place the two polluter types on equal footing by 

assuming they have identical cost functions as well as identical (expected) transfer 

coefficients.  Then, a marginal cost ratio (MCR),      
       

   , given the curvature of the 

cost function, equals unity only when point and nonpoint emissions are equal. A ratio 

greater than (less than) unity implies that nonpoint emissions are less than (greater than) 

point emissions.            ,   , and           are strictly positive, such that deviation 

of the MCR from unity depends on the sign of                   .   Ceteris paribus, 

increasing the covariance between marginal damages and nonpoint transfer coefficients 

decreases the optimal nonpoint emissions relative to point source emissions, while 

decreasing the covariance term has the opposite effect.  When the covariance term is 

zero, then the MCR equals unity.  
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In the model,                    can take any sign, yet in practice this term is 

likely to be positive.  In the special case where there is a single nonpoint source, there 

would – without assumption – be a positive covariance between marginal damages and 

the transfer coefficient of the nonpoint source. This is because a positive shock to the 

transfer coefficient translates into a positive shock to marginal damages. With multiple 

firms, the sign of the covariance term is not as clear, and depends on the joint distribution 

of the nonpoint transfer coefficients.   If the transfer coefficients are independently 

distributed, i.e. shocks to the transfer coefficients of multiple firms are uncorrelated, then 

the covariance term is unambiguously positive. A negative covariance term might arise if 

a positive shock to a particular firm’s transfer coefficient accompanied a negative 

(overall) shock to other firms.  While this could be true for a particular firm, it seems 

likely that on average the shocks are positively correlated – e.g. rainfall causes more 

runoff from all farms. In practice, drawing from how trading ratios for water quality 

trading programs are typically established, tax rates would be based on data averaged 

across related firms – related in terms of location and/or purpose. As such, it is very 

likely that tax rates in this second-best setting would be universally higher for nonpoint 

sources (under the above equal-footing scenario).     

In this section we consider three tax regulations that theoretically motivate firms to 

choose the optimal emission levels defined by the social planner’s problem discussed 

above.  The optimal point and nonpoint tax rates   
  and   

  and the optimal tax ratio (TR), 

  
   

  , are derived for three variants of ambient taxes, and the TRs are compared.  It is 
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implicitly assumed that regulation is needed, i.e. in the absence of regulation ambient 

pollution is higher than what is optimal from the perspective of the regulator. 

Now consider each polluter’s objective under a tax.  Let    and    represent the tax 

payments for given point and nonpoint polluters.  Each polluter’s objective is to choose 

emissions in order minimize the sum of its costs and expected tax payments, as 

formulated in (2.5) and (2.6): 

   
  
             (2.5) 

   
  
             (2.6) 

In order to induce socially optimal emissions, the regulator must impose a tax mechanism 

that provides incentives for firms to align with the social planner’s problem; i.e. the tax 

mechanism must equate the necessary conditions of the social planner with those of the 

firms.  

 

Emissions Tax on Point Sources and Ambient Tax on Nonpoint Sources.  The first tax 

considered is an obvious one for regulating point and nonpoint sources.  It regulates point 

sources with standard taxes on their observable emissions, and nonpoint sources, whose 

emissions are unobservable, are taxed based on ambient pollution.  The form of the 

ambient tax used here and throughout the paper is a simplified version of Segerson’s 

(1988) mechanism, under which the tax payment is equal to a tax rate multiplied by the 

ambient level of pollution. Thus, the point and nonpoint tax payments are         and 

      .  Expected marginal tax payments are,    and            , i.e., the expected 

increases in tax payments per unit of point and nonpoint emissions, respectively. Setting 
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these equal to the point and nonpoint expected marginal social damages at the optimum, 

            and                , respectively, and solving, gives the optimal point and 

nonpoint tax rates, (2.7) and (2.8). Dividing the nonpoint source rate by the point source 

rate gives the optimal TR (2.9). 

  
 =             (2.7) 

  
  

                  

         
            

(2.8) 

  
 

  
  

                  

            
        

  
 

  
 

(2.9) 

Examining equations (2.7) and (2.8) reveals that in general the regulator requires 

individual-specific tax rates for all sources.  Point source tax rates differ according to 

their transfer coefficients.  Each nonpoint source is charged an individual-specific tax rate 

that varies between nonpoint sources according to  
                  

         
.  Notice also that 

whether the TR departs from unity depends on the sign of                    and the 

magnitude of 
                  

            
        

 relative to     .  The TR contains no adjustment for the 

nonpoint expected transfer coefficient in the second term on the right hand side of (2.9), 

in contrast to the case of the MCR defined in equation (2.4).  This is because nonpoint 

sources already take into account their expected transfer coefficient, given that they are 

being taxed on the ambient level. 
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Ambient Tax on Both Point and Nonpoint Sources.  Now consider a mechanism under 

which both the point and nonpoint sources are taxed based on the ambient level, such that 

tax payments are given by        and       .  The nonpoint tax payment is the same 

as under the previous mechanism, but the point source is taxed on the ambient level 

pollution instead of its emissions.  The optimal tax rates and optimal TR are given in 

equations (2.10) through (2.12):   

  
 =           (2.10) 

  
  

                  

         
            

(2.11) 

  
 

  
  

                  

            
      

    
(2.12) 

Note that the tax rate on nonpoint sources remains the same as in equation (2.8), yet 

because the point sources are now taxed on the ambient level of pollution, they take into 

account their differential transfer coefficients, and therefore are taxed a common rate 

equal to the marginal damages at the optimum.  It is no longer necessary to charge 

differential tax rates on point sources.  Notice also that the optimal TR contains no 

adjustment for the relative magnitudes of point and nonpoint transfer coefficients in the 

second term on the right hand side in (2.12).  Whether or not point or nonpoint sources 

receive a higher tax rate depends only on the sign of the covariance term. 

From a regulatory standpoint, regulating both point and nonpoint sources through an 

ambient tax has two advantages over taxing point sources on observable emissions as in 

the previous case.  First, the regulator is able to apply a uniform tax to point sources, 

which is perhaps more politically feasible than the differential rates required in the first 
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case.  Indeed, two identical firms could otherwise pay different tax rates simply because 

of their location on the watershed, which was presumably chosen prior to identification of 

the ambient monitoring point. Second, the regulator does not need to observe and monitor 

point source emissions in order to implement the tax.  The only monitoring cost that the 

regulator incurs is the cost of monitoring the ambient level.  Indeed, the reason why the 

mechanism was developed for nonpoint source pollution in the first place is because it 

does not require observation and monitoring of emissions (Segerson 1988). 

   

Damage Tax.  The final tax examined in this section is one that charges both point and 

nonpoint sources based on the total social damages from ambient pollution (Hansen 

1998).  The point and nonpoint tax payments are specified as           and    

      .  The expected marginal effects of emissions on these tax payments are 

     
        and      

           . Thus, the optimal TR equals 1.  With damages as 

the tax base, nonpoint sources internalize the covariance between marginal damages and 

their transfer coefficient, so that the tax rates no longer need to adjust for this difference 

across sources.  The damage tax is attractive because the regulator requires no firm-

specific information in order to set the optimal tax rates, and because a common rate 

applied to all polluters may make the instrument more politically acceptable than the two 

tax mechanisms explored above.   

Yet Hansen (1998, 2002) does note some potential issues with the mechanism.  A 

major issue with the damage tax is that it shifts the information burden from the regulator 

to the regulated.   Polluters now need to know the expected marginal effect of their 

emissions reductions on damages at the optimum.  In order to know this information, 
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polluters need to have some knowledge of the damage function and notions of how others 

will reduce emissions.  Thus, it is evident that the damage tax also shifts the strategic 

environment.  With ambient pollution specified as a linear combination of point and 

nonpoint emissions, the two ambient tax mechanisms implement the optimum in 

dominant strategies.   The damage tax on the other hand implements the optimum in Nash 

strategies and may be unstable, and there may be incentives to collude on higher than 

optimal levels of emissions reductions. 

 

2.4 Achieving an Ambient Target at Least Cost with a Joint Point-Nonpoint Tax 

Mechanism 

  

In practice, the social damage function may be unknown.  In general, uncertainties 

over the damage function make it difficult to determine the optimal level of ambient 

pollution.  For this reason, the regulatory objectives in practice more often aim at meeting 

an environmental goal at least cost, instead of targeting optimal emissions reductions. 

This section examines the use of ambient taxes to cost-effectively meet 

environmental goals.  Two different environmental goals are considered: (1) meeting an 

ambient target “on average”; and (2) meeting an ambient target with a specified 

probability. Since it was demonstrated earlier that taxing point sources based on 

emissions as opposed to ambient pollution increases monitoring costs by requiring the 

regulator to observe point source emissions, the analysis is restricted to an ambient tax 

applied to both point and nonpoint sources. 
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Meeting an Ambient Pollution Target on Average.  When the regulatory goal is to meet 

an ambient pollution target on average, the regulator’s problem is formulated as one of 

minimizing the sum of emissions costs subject to the constraint that the expected value of 

ambient pollution is less than or equal to the target level, denoted by   : 

   
     

       

 

   

                  

 

   

          

 

   

     

 

   

 
(2.13) 

The levels of emissions that satisfy (2.13) are, assuming an interior solution, 

characterized by (2.14), (2.15), and (2.16): 

      
                     (2.14) 

      
                            (2.15) 

       
 

 

   

          
 

 

   

       
(2.16) 

Equations (2.14) and (2.15) can be combined to form the MCR: 

      
  

      
  
 
         

  
 

(2.17) 

Equation (2.17) requires that at the least-cost solution, the marginal rate of substitution 

between point and nonpoint marginal costs must equal the ratio of point to nonpoint 

(expected) transfer coefficients.  Again for comparison, we assume identical point and 

nonpoint cost functions, as well as identical transfer coefficients. Then the MCR is equal 

to one, and the least cost level of emissions is the same for point and nonpoint sources. 

Because the goal is to meet the target on “average,” there is no need for point and 

nonpoint emissions to differ based on the stochasticity of nonpoint emissions. Now 

consider using ambient taxes in order to satisfy (2.17). As earlier, the tax payments by 

point and nonpoint sources are        and       .  Setting the expected marginal tax 
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payments equal to the expected marginal effects of emissions on the constraint gives 

  
    

     and 
  
 

  
   , so the regulator is able to meet the environmental target at least 

cost by applying a uniform tax rate on the ambient level of pollution. 

 

Meeting an Ambient Pollution Target with a Specified Probability.  While meeting a 

target on average is one way to formulate an environmental goal when the damage 

function is unknown, the pollution control literature also recognizes the more general 

environmental goal of meeting a target with a specified probability (Beavis and Walker 

1983; Ghosh and Shortle 2010; Horan 2001; Kampas and White 2004; Lichtenberg and 

Zilberman 1988; Qiu et al. 2001; Shortle 1990).  This probabilistic formulation is 

consistent with a situation in which the regulator wishes to keep the probability that a 

threshold is exceeded below a given level, which might be the case for example if there 

are pollutant thresholds.   

The regulator’s problem is formulated as one of choosing the point and nonpoint 

emissions in order to cost-effectively meet the ambient pollution target     with a 

specified probability.  So the constraint can be stated as           , where   is the 

exogenously specified probability with which the ambient level of pollution may exceed 

the target.  Substituting for   gives         
 
             

 
         .  Ghosh and 

Shortle (2010) point out that in watershed applications involving nonpoint sources, the 

information needed to express this constraint as a deterministic equivalent, namely, the 

joint distribution of ambient contributions, is often not known.  The modeling of the 

probability statement therefore follows the method used by Gosh and Shortle (2010) of 
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constructing an approximation of the probability constraint by applying Chebychev’s 

inequality.   

Following Gosh and Shortle (2010), Chebychev’s inequality states that the following 

must be true: 

           
      

 
     

Applying this inequality to the current problem gives 

          
 
                

 
     

                        
 
   

 
   

 
    , 

which implies that            will be satisfied by setting the ambient pollution target 

such that          
 
                

 
     

                        
 
   

 
   

 
.  Now the 

regulator’s problem can be written as:  

   
     

       

 

   

                

 

   

             

 

   

  
      

 
    

 

   

 

(2.18) 

The necessary conditions for an interior solution to (2.18) are given by 

      
                     (2.19) 

      
                

   
                

                   
   
   

          
          

       

(2.20) 

      

 

   

             

 

   

  
      

 
          

(2.21) 
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Dividing (2.20) by (2.19) and denoting    
                

                   
   
    as 

           
    allows comparison of the point and nonpoint source emissions through 

the MCR: 

      
  

      
  
 
         

  
 

        
   
 

         
   

 

(2.22) 

As before, we assume identical point and nonpoint cost functions and expected 

transfer coefficients.  The second right hand side term accounts for the stochasticity of 

the nonpoint transfer coefficient.  If the marginal effect of i’s emissions on the variance 

of ambient pollution is negative, i.e.,            
    , then the second term on the 

right hand side is negative, and the level of nonpoint source emissions at the least cost 

solution is higher than the level of point source emissions.  A positive relationship 

between emissions and the variance, i.e.             
    , has the opposite effect.  

Whether            
    is positive or negative depends on the sign of the least cost 

emissions-weighted sum of covariance terms between i’s transfer coefficient and the 

transfer coefficients of the other nonpoint sources,    
                   

   
   , and on 

this term’s magnitude relative to the marginal effect of i’s emissions on the variance of its 

own emissions,    
            .  In either case, the decrease or increase in least cost 

nonpoint emissions relative to point source emissions is increasing in magnitude with 

 
        

   
  .  Finally, the denominator in the second term on the right hand side of (2.22), 

            , weights the contribution of             
   to the satisfaction of the 

probabilistic constraint.  As the effect of the nonpoint source’s emissions on the variance 
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of ambient pollution becomes smaller relative to the variance of ambient pollution, or as 

the probability with which the target may be exceeded increases, relatively less weight is 

placed on             
   in determining the least-cost level of emissions for the 

nonpoint source. 

The point and nonpoint marginal effects on the ambient tax payments are      and 

           . Setting them equal to the point and nonpoint marginal effects on the 

constraint,       and              

        

   
  

          
  , and solving, gives the point and 

nonpoint tax rates that satisfy the constraint at least cost.  Dividing them gives the least 

cost TR: 

  
     (2.23) 

  
       

        
   
  

                
   

 

(2.24) 

  
 

  
    

        
   
  

                
   

 

(2.25) 

The tax rate on the point source is equal to the shadow value of the constraint at the least- 

cost solution.  The nonpoint source tax rate has the added second term on the right hand 

side of (2.24) to account for the stochasticity of nonpoint emissions.  Examining the least 

cost TR, the nonpoint source faces a tax rate that is greater than, equal to, or less than the 

point source tax rate as            
   >,=,< 0.  The regulator is able to implement the 

probabilistic standard at least cost with a common tax rate for all point sources, but must 

in general use an individual-specific tax rate for each nonpoint source. 
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2.5 Conclusion 

 

This is the first paper to look at the use of taxes for joint regulation of point and 

nonpoint sources.  When a regulator’s goal is to achieve optimal emissions, we find that 

otherwise identical point and nonpoint sources may have different optimal tax rates based 

on the stochasticity of nonpoint emissions. While point and nonpoint tax rates are the 

same under a damage-based tax, under the other two mechanisms the tax rates for 

otherwise identical point and nonpoint sources will not in general be equal to one, a result 

that is analogous to the trading ratio of point to nonpoint emissions being generally 

different from one in the literature on water quality trading.  When point sources are 

regulated with an ambient tax or with a damage-based tax, then they are all charged a 

uniform tax rate; however, nonpoint sources require individual-specific tax rates except 

in the case of a damage-based tax.  The mechanism that taxes both point and nonpoint 

sources on ambient pollution has advantages over taxing point sources based on 

observable emissions, since it absolves the regulator of monitoring point source 

emissions and allows point sources to be taxed a common rate. 

In practice, regulatory objectives may take the form of meeting a constraint at least 

cost, as opposed to implementing the optimal level of emissions.  When the regulatory 

goal is to meet a level of ambient pollution on average, the regulator is able to meet this 

constraint at least cost with a uniform rate on the ambient level applied to both point and 

nonpoint sources. When the ambient tax is used to satisfy a probabilistic constraint, 

otherwise identical point and nonpoint sources face different tax rates based on the effect 

of the stochasticity of nonpoint emissions on the constraint.  As in the case of 
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implementing optimal emissions reductions with an ambient tax, point sources face a 

common tax rate while nonpoint sources require individual-specific tax rates. 

There are more realistic ways of modeling the problem of point-nonpoint watershed 

pollution than the approach in this paper.  The model developed is basic, in order to offer 

direct comparisons of point and nonpoint source tax rates and how they differ based on 

the uncertainty of nonpoint emissions. Thus, this work should be considered a first pass at 

incorporating point sources into the literature on nonpoint source pollution ambient taxes. 

Future research on ambient taxes, both theoretical and experimental, should consider 

frameworks that include both point and nonpoint sources, and give further consideration 

to the complexities of the point-nonpoint pollution problem. 
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CHAPTER 3 :  EXPERIMENTAL TESTS OF  

WATER QUALITY TRADING MARKETS 

 

 

3.1 Introduction 

 

Surface water pollution is an issue of great concern for U.S. citizens and policy 

makers. Polluted waters pose human health risks, environmental risks, and economic 

risks associated with consequences such as water borne illnesses, consumption 

advisories, habitat degradation, drinking water closures, and reduced recreational 

opportunities (U.S. EPA 2002).  According to the most recent available U.S. water 

quality assessments reported at the Environmental Protection Agency’s (EPA) website, 

50% of assessed river and stream miles, 66% of assessed lake, pond and reservoir acres, 

and 63% of assessed bay and estuarine square miles were not clean enough to support all 

of their designated uses (U.S. EPA 2011).  In order to meet water quality goals, 

policymakers have increasingly endorsed adoption, on a watershed basis, of water quality 

trading (WQT) programs.  This endorsement is at least in part because of the success of 

the U.S. sulfur dioxide (SO2) emission market, and other high-profile air quality trading 

programs.  A 2004 report identified more than 70 WQT programs in some phase of 

development throughout the U.S., about twice as many as there were in 1999 (Breetz et 

al. 2004; Environomics 1999).   

After more than a decade of EPA support, the numerous WQT initiatives that have 

been established for watersheds in the U.S. are still realizing only a limited number of 

trades. Indeed, according to a recent EPA evaluation only 100 facilities had engaged in 
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trade, with 80 percent coming from the Long Island Sound Trading Program (U.S. EPA 

2008).
10

 Several papers have highlighted unique characteristics of WQT programs, and 

have speculated that some of these features may explain the limited success (Boisvert et 

al. 2007; Farrow et al. 2005; Hoag and Hughes-Popp 1997; King 2005; King and Kuch 

2003; Sado et al. 2010).  At a very fundamental level, the institutions used in practice 

differ markedly from the textbook cap-and-trade institution that typifies programs such as 

the SO2 emissions market.  As a first step in empirically investigating WQT markets, this 

study uses laboratory experiments to isolate how the effects of market design affect 

economic efficiency. In particular, we compare cap-and-trade, two forms of baseline-and-

credit institution, and a tax/subsidy regulation, and examine the effect of introducing 

fixed technology costs with these four institutions. 

The majority of WQT programs involve baseline-and-credit trading institutions, 

under which polluters have an emissions baseline and tradable credits are linked to 

reductions beyond this baseline (Breetz et al. 2004; Environomics 1999).
11

 That is to say, 

in contrast to cap-and-trade programs, there is no initial allocation of credits. There are 

two basic versions of baseline-and-credit institutions in practice. In the first, a polluter 

generates credits by establishing – and getting approved – an action plan that would lead 

to reductions below the baseline.  This proposal is non-binding in the sense that 

reductions are not required in the event the proposer is unable to sell credits. Under the 

                                                 

 
10

 As we discuss below, the “market” institution for this successful program differs substantially from the 

vast majority of permit trading markets.    
11

 In the language of emissions trading, a tradable right to emit an amount of some pollutant is typically 

referred to as a permit or allowance when talking about cap-and-trade, and is referred to as a credit when 

discussing baseline-and-credit institutions.  For sake of consistency this paper applies the term credit 

regardless of the institution being discussed. 
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second, a polluter only generates credits after it has been verified that emissions 

reductions below the baseline have occurred. The EPA (2007) strongly endorses the 

second version of baseline-and-credit in recent guidelines:  

The timing of trades is critical. A basic premise of water quality trading is that credits 

should not be used before the time frame in which they are generated. In general, a 

permitting authority should not allow for a pollutant reduction credit in a NPDES 

permit on the basis of the proposed treatment by another point source or an unverified 

commitment to install a BMP by a nonpoint source and their anticipated pollutant 

reduction (pg.34). 

Both versions involve considerable transaction costs relative to cap-and-trade. Moreover, 

in the second version, there is additional market risk on the part of the abating firm given 

that costly actions take place prior to the realization of market prices and credit demand. 

Theoretical work on sunk investments has demonstrated that inefficiency can occur when 

investments and prices cannot be simultaneously determined (Mailath et al. 2004); the 

second version of baseline-and-credit presents this type of problem. 

Although the two versions of baseline-and-credit seem to be the most prevalent 

institutions in practice, some programs are fashioned instead in the way of The Long 

Island Sound Trading Program (one of the lone WQT success stories), which does not 

involve credit trading in any conventional sense.
12

 In trading jargon, polluters that exceed 

                                                 

 
12

 As stated in U.S. EPA (2008), “[s]ome [WQT] program interviewees noted that their program lacks the 

defining features of trading (e.g., buyers and sellers, credits) and felt that EPA and others may apply the 

term too freely (pg.3-3).”   
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their baseline buy credits and those with emissions below their baseline sell credits. 

However, the “trading” is with the regulator who automatically charges/pays for credits 

at a pre-announced price at the end of a monitoring period. Further, there is no 

requirement that payments and receipts balance out. Thus, this mechanism is better 

described as a tax/subsidy regulation than a market trading institution.  Because the 

tax/subsidy involves no market uncertainty, it serves as an interesting comparison with 

the baseline-and credit and cap-and-trade institutions, particularly when considering the 

effects of fixed technology costs. 

It is typical for firms in WQT markets to have to incur fixed technology costs in order 

to adopt abatement technology and abate at the levels that realize efficiency gains.  As 

discussed by Sado et al.(2010), Caplan (2008), Boisvert et al. (2007), and the EPA 

(1996), the abatement options available to sources of water pollution are often restricted 

to large investments associated with significant increases in abatement capabilities.  

Boisvert et al. (2007) and Sado et al. (2010) argue that fixed technology costs may 

impinge on trade in markets with few buyers and sellers, such as those often found in 

WQT.  In order to abate at the efficient level, it might be necessary for a potential seller 

to adopt technology and take an upfront loss, in which case the seller would need to 

recover the technology costs in subsequent trades in order for the investment to be 

profitable.  Where uncertainty exists over the number of trades and the prices at which 

they will occur there may be the potential for underinvestment and inefficiency.  Thus as 

alluded to earlier, the tax/subsidy regulation may be more robust to fixed technology 

costs than the market trading institutions.   
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The ways in which the baseline-and-credit institutions, cap-and-trade, and the 

tax/subsidy relatively influence the performance of emissions trading, and the effect of 

fixed technology costs with these institutions, are open empirical issues that are 

investigated in this paper using economic laboratory experiments.  Laboratory 

experiments have been fundamental and the primary tool in understanding the impact of 

institutional features related to cap-and-trade markets for air pollution.  Although the 

experimental literature on emissions trading is vast (see Bohm (2003) and Muller and 

Mestelman (1998) for reviews), the majority of these experiments involve cap-and-trade, 

and few have focused on issues related to WQT markets.   

Buckley et al. have several papers that constitute the only experimental work on 

baseline-and-credit versus cap-and-trade (2011, 2006, 2008).  These papers however do 

not provide fundamental tests of the main distinguishing feature between baseline-and-

credit and cap-and-trade of no initial credit allocation, nor do they provide a fundamental 

test of the second feature present in many baseline-and-credit markets, which is the need 

to pre-commit to abatement in order to generate credits.   Buckley et al. (2011) essentially 

test the joint effect of three institutional features, the two mentioned above along with 

one in which emissions ratios are enforced rather than aggregate emissions, of which two 

can and do differ in practice, and do so in a dynamic environment where learning is 

difficult and outcomes are history dependent.  

The experiment reported in this paper systematically compares cap-and-trade, both 

versions of baseline-and-credit, and the tax/subsidy, both with and without fixed 

technology costs, in terms of their effects on the performance of emissions trading.  The 

remainder of the paper is organized as follows.  Section 3.2 describes the experiment 
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design; Section 3.3 describes the experiment participants and procedures; Section 3.4 

presents the results; and Section 3.5 concludes.  In Sections 3.2, 3.3, and 3.4, the four 

institutions are referred to using the following labels: baseline-and-credit with non-

binding proposal (BAC-1); baseline-and-credit with abatement pre-commitment (BAC-

2); cap-and-trade (CAT); and tax/subsidy (TS).  Furthermore, the terms Tech and No 

Tech are used to refer to treatments with and without fixed technology costs, 

respectively. 

 

  3.2 Experiment Design 

 

The experiment design consists of the four institutions interacted with the fixed 

technology costs to yield eight treatments.  There are four replications of each treatment, 

except for BAC-2 with Tech which for which there are six.
13

  Each replication consisted 

of an eight-subject group participating in a common market over a sequence of 10 trading 

periods.
14

  Although the number of periods was predetermined it was unknown to 

subjects.  The basic features of the design in terms of subject types, abatement cost 

schedules, framing, and trading interface are loosely based on Cason and Gangadharan 

(2006).  While the experiment itself was neutrally framed, for clarity of exposition we 

describe the experiment in the context of emissions trading.  

                                                 

 
13

 Consistent with List et al. (2010) the additional sessions of BAC-2 were motivated by the higher variance 

we saw in this treatment. 
14

 For convenience, we use market terminology when broadly characterizing the experiment, although we 

acknowledge that the TS treatments do not involve a market in a conventional sense. 
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In all treatments subjects faced a basic constraint in each period: their abatement 

(“production”, in the instructions) had to be greater than or equal to a particular level.  

The required level of abatement was automatically enforced, so subjects did not face a 

compliance decision.
15

  Subjects could alter their required levels of abatement by buying 

and selling credits (“coupons”); however, the specifics of how credits were obtained, 

bought and sold differed across institutions and are discussed in detail later.  A subject’s 

period earnings were equal to an endowment minus the costs of abatement and the costs 

of any credits purchased, plus earnings from any credits sold.     

The particular level of abatement required by a subject at the start of each period 

(initial abatement requirement) was equal to 10 minus the subject’s credit allocation in 

the TS and CAT treatments, and was equal to 10 minus the subject’s baseline in the 

BAC-1 and BAC-2 treatments.  While the credit allocation and the baseline both 

conferred equivalent rights to emit pollution in a status quo sense, the key difference 

between them was that a credit allocation allowed the sale of these emission rights, 

whereas a baseline did not.  So for example, a subject with a credit endowment of four 

and a subject with a baseline of four would each have started the period required to abate 

six units to meet the constraint; however, the subject with a credit endowment would 

have started with four sellable credits, and the subject with the baseline would have 

started with zero credits to sell.   

                                                 

 
15

 Although compliance in emissions trading programs is an important issue receiving increasing attention 

in economics experiments (Cason and Gangadharan 2006; Murphy and Stranlund 2007; Stranlund et al. 

2011), excluding this element allowed us to focus on testing the underlying differences in the institutions at 

hand. 
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In each eight-person group there were four types which varied by endowments, credit 

allocations and baselines, abatement costs, and exchange rates.  Types and groups were 

randomly assigned and remained the same for all 10 periods.  In equilibrium, two of these 

types were buyers and two of these types were sellers, so that there were four buyers and 

four sellers in each group.  However, subjects were not explicitly assigned buyer or seller 

roles; for the three trading institutions, subjects were allowed to both buy and sell credits. 

Baselines, credit endowments, and abatement costs for the four types are shown in Table 

3.1.  The column labeled MC in Table 3.1 indicates the marginal abatement cost 

associated with each unit of abatement, while the column labeled FC indicates the fixed 

technology cost.  A subject’s fixed technology cost was either 100 or 300 and was 

automatically determined by the number of units that the subject abated.  Lower levels of 

abatement were associated with a fixed technology cost of 100, while higher levels of 

abatement were associated with a fixed technology cost of 300.  The point along the 

abatement cost schedule at which the fixed technology costs switched was varied 

between buyers and sellers.  Note that in the No Tech treatments, the fixed technology 

cost was zero for all levels of abatement, and there was no mention of technology in the 

instructions.   

Given the parameters in Table 3.1, the equilibrium respectively has Type 1’s and 2’s 

each buying three and four credits, and Type 3’s and 4’s each selling four and three 

credits, for a total of 14 trades at an equilibrium price in the interval [220, 240] and 

potential gains from trade of 2400.  Type-specific gains from trade at the competitive 

equilibrium are 300 for all types in the Tech treatments.  In the No Tech treatments Type 

1’s and 4’s have gains of 300, while Type 2’s have gains of 100, and Type 3’s have gains 
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Table 3.1 Abatement costs, credit allocations, and baselines by type 

 Buyers Sellers 

Abatement Type 1 Type 2 Type 3 Type 4 

 MC FC MC FC MC FC MC FC 

1 100 100 155 100 17 100 25 100 

2 150 100 170 100 18 100 27 100 

3 200 100 185 100 19 100 30 100 

4 260 100 200 100 20 100 35 100 

5 330 100 215 100 50 300 40 300 

6 400 100 240 100 130 300 50 300 

7 475 100 250 100 220 300 60 300 

8 550 300 260 300 310 300 130 300 

9 625 300 270 300 450 300 200 300 

10 700 300 425 300 575 300 300 300 

Credit Allocation or 

Baseline 

4  1  7  4  

(1) Note that MC gives the marginal abatement cost for the indicated unit of abatement, while FC gives the 

fixed technology cost associated with the indicated level of abatement. 

(2) Note also that the numbers given in FC apply only to the treatments with technology.  In treatments 

without technology FC=0 for all levels of abatement. 
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of 500.  Importantly, our design is such that, under standard assumptions, the theoretical 

predictions are the same for all of the eight treatments; all four institutions are 

theoretically efficient both with and without fixed technology costs.  However as we 

havealready conjectured, key differences between the institutions or/and the impacts of 

fixed technology costs may lead to inefficiencies empirically.  The following descriptions 

indicate specifically the way in which TS, CAT, BAC-1, and BAC-2 were implemented 

in the experiment. 

 

TS.  With the TS institution, it was required that the sum of each subject’s abatement and 

credits be equal to 10.   Subjects were instructed to choose a level of abatement between 

one and 10 units.  After subjects chose their abatement levels, credits were automatically 

bought or sold at a fixed price of 230 so that abatement and credits would sum to 10.  So 

for example, if a subject had a credit endowment of four and chose seven units of 

abatement, she would automatically sell one credit at a price of 230.  If she chose six 

units of abatement, she would neither buy nor sell.  If she chose five units of abatement 

she would automatically purchase one credit at a price of 230. 

 

CAT.  As with the TS, CAT required each subject to satisfy the rule that abatement and 

credits sum to 10.  However, in CAT subjects met this requirement by trading credits 

with one another in a computerized double auction.  Each subject entered the market with 

her credit allocation, and then could buy or sell credits in order to adjust her credit 

holdings.  After the market closed, each subject’s abatement was automatically 

determined based on credit holdings.  So for example, if a subject with a credit allocation 
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of four was a net buyer of one credit in the emissions trading market, then she would 

automatically abate five units.  If she did not alter her initial credit holding, then she 

would abate six units.  If she was a net seller of one credit, then she would abate seven 

units. 

 

BAC-1.  In BAC-1, each period consisted of two stages.  In the first stage, subjects were 

required to propose a level of abatement between one and 10.  A subject could request 

credits to sell in the market by proposing a level of abatement that exceeded her initial 

abatement requirement.  If a subject proposed a level of abatement higher than her initial 

abatement requirement, then the number of credits she received was equal to her 

proposed abatement minus her initial abatement requirement.  If a subject proposed a 

level of abatement less than or equal to her initial abatement requirement, then she 

received zero credits for the emissions trading market.  Proposing abatement in the first 

stage simply allowed the subject to request credits for the emissions trading market.  

Actual abatement was not determined until after the market in the second stage.   

In the second stage, subjects traded credits with one another in a computerized double 

auction.  Each subject began the trading period with the number of credits she requested 

in the first stage.  At the end of the trading period, the subject’s abatement was 

automatically determined so that the sum of the subject’s baseline, abatement, and credit 

holdings minus requested credits would equal 10.  So for example, if a subject had a 

baseline of four and proposed seven units of abatement, then she would receive one credit 

for the emissions trading market.  If that subject was a net seller of one credit, then her 

abatement would be seven units.  If she did not alter her credit holdings from the initial 
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one credit, then her abatement would be six units.  If she was a net buyer of one credit, 

then her abatement would be five units.  From the description it is hopefully clear that the 

second stage of BAC-1 is essentially the same as CAT except for potentially different 

initial levels of credits. 

 

BAC-2.  As in BAC-1, each period in BAC-2 also consisted of two stages.  The 

fundamental difference between BAC-1 and BAC-2 was that in BAC-2 subjects had to 

pre-commit to abatement decisions in the first stage in order to generate credits.  In the 

first stage, subjects proposed a level of abatement between one and 10.  If a subject 

proposed a level of abatement higher than her initial abatement requirement, then the 

number of credits she received was equal to her proposed abatement minus her initial 

abatement requirement.  If a subject generated credits, then this was a binding abatement 

decision, and her abatement for the period was equal to her proposed abatement in the 

first stage regardless of what happened in the subsequent market.  If a subject proposed a 

level of abatement less than or equal to her initial abatement requirement, then she 

generated zero credits, in which case her abatement was determined automatically at the 

end of the emissions trading market so that the sum of her baseline, abatement, and credit 

holdings would equal 10.  So for example, if a subject had a baseline of four and 

proposed seven units of abatement, then she would enter the emissions trading market 

with one credit.  Regardless of her market transactions, she would abate seven units for 

the period.  If she instead had proposed six units of abatement, then she would enter the 

market with zero credits.  If she were a net buyer of one credit, then she would 

automatically abate five units. 
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In the CAT, BAC-1, and BAC-2 institutions, subjects traded credits with one another 

in a computerized double auction.  Each trade was for one credit, and all subjects could 

submit offers to sell and bids to buy as well as accept standing offers and bids.  Only the 

most favorable offer and bid were displayed on the auction screen, so that in order to 

have an offer displayed a subject had to submit a lower price than the standing offer, and 

in order to have a bid displayed a subject had to submit a higher price than the standing 

bid.  When a subject accepted an offer or a bid, a transaction occurred immediately, and 

the current offer and bid were cleared from the trading screen.  While there was no 

explicit restriction on the number of transactions a subject could make, subjects were not 

allowed to reduce their abatement below one unit, and automation was in place that 

prevented a subject from buying a credit if doing so would violate this rule.  Information 

displayed on the trading screen other than standing bids and offers included a history of 

transaction prices and buyer and seller IDs, the subject’s current period earnings, current 

earnings in the market, current level of required abatement, and current credit holdings, 

all of which were updated accordingly as transactions occurred.  Also displayed onscreen 

was the time remaining in the market.   The market lasted for three minutes in the first 

two periods of each session and then was reduced to two minutes and 30 seconds for the 

remaining periods. 

 

3.3 Experiment Participants and Procedures 

 

We conducted 17 sessions between April and June of 2011, with either one or two 

groups (i.e. markets) in each session (depending on how many subjects showed up for the 
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experiment).
16

  All treatments were implemented in terms of a between-subjects design, 

except for TS treatments.  We ran two sessions for the TS treatments, each session having 

two groups and lasting 20 periods.
17

  In one of these sessions, subjects faced No Tech in 

the first 10 periods, and then faced Tech in the second 10 periods.  In the other session 

this order was reversed.  In these TS sessions, subject types were randomly reassigned 

and the groups randomly rematched after the first 10 periods. 

 A total of 240 subjects participated in the experiments, all of whom were recruited 

from the student population at the University of Tennessee.  The experiments were 

conducted in the University of Tennessee Experimental Economics Laboratory and run 

on client computers from a designated lab server using z-Tree (Fischbacher 2007).  

Subjects were assigned to individual computer stations separated by dividers, and prior to 

the subjects entering the lab each station was provided a pencil, a calculator, a blank 

sheet of paper, and a copy of the instructions for the experiment.   

In each session, subjects participated in a standard risk preference elicitation lottery 

(Holt and Laury 2002) before participating in the emissions trading experiment.
18

  

Instructions for the lottery were read aloud by an experiment moderator while subjects 

followed along with the instructions at their computer stations.  After the lottery, 

instructions for the emissions trading experiment were administered in the same manner, 

and questions were answered.  During the instructions, two short multi-part quizzes were 

conducted in order to solidify the subjects’ understanding of the experiment.  In order to 

                                                 

 
16

 Specifically, there were 13 two-group sessions, and four one-group sessions. 
17

 It made sense to run two treatments in each TS session given that subjects progressed through the TS 

periods much faster than under the other institutions. 
18

 Explorations of the effects of risk aversion are planned for future work. 
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encourage subjects to consider the quizzes carefully, they were incentivized with US$1 

paid per quiz if all questions were answered correctly.  Prior to the paid periods of the 

experiment, subjects participated in one unpaid practice period in order to gain familiarity 

with the software and decision environment, and after the practice period subjects were 

given a final opportunity to ask questions before beginning the actual experiment.  At the 

conclusion of the experiment, payoffs from the lottery were displayed onscreen in US$ 

and subjects completed a short questionnaire.   

Upon completion of the questionnaire, experimental dollars from the emissions 

trading experiment were converted to US$ at rates of 150:1 for Type 1’s and 4’s, 50:1 for 

Type 2’s, and 250:1 for Type 3’s in the No Tech treatments.  In the Tech treatments the 

exchange rate was 150:1 for all types.
19

  These exchange rates along with the 

endowments were chosen so that, for all types under all treatments, if a player did not 

trade she would make $.40 and with efficient trading she would make $2.40.  Thus, there 

were large financial gains from trade.  Earnings from the emissions trading experiment 

were added to the earnings from the lottery and quiz questions, and subjects were paid in 

cash.  Sessions lasted between 90 and 105 minutes, and subjects earned an average of 

about $25 (not including earnings from the quiz questions), with a range of $10 to $82. 

 

 

 

                                                 

 
19

 In the TS treatments these exchange rates were doubled (i.e., half as many US$ per experimental dollar), 

since the sessions in the TS had twice as many periods as in the other treatments. 
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3.4 Results 

 

Analysis of Efficiency.  The analysis of the data is primarily organized around efficiency 

across the eight treatments.  We define efficiency as the percentage of the potential gains 

from trade that are actually captured by a group in a given period.  If no trades were to 

occur, group earnings would be 508 in the Tech treatments, and 488 in the No Tech 

treatments, for a given period.   Therefore, observed gains from trade are calculated as 

observed group earnings minus 508 for the Tech treatments, and minus 488 for the No 

Tech treatments.  We calculated the efficiency performance measure for each group in 

each period by dividing the observed gains from trade by the potential gains of 2400 and 

multiplying by 100.  Note that it is possible for the efficiency measure to be negative if 

the observed group earnings are lower than they would have been in the absence of 

trading.   

Figure 3.1 graphs the mean group efficiency in each period for each institution by 

Tech and No Tech.  Examining this figure, BAC-2 clearly appears less efficient than the 

other institutions both without and with fixed technology costs, while CAT and BAC-1 

appear to track each other closely.  TS appears to have similar efficiency as CAT and 

BAC-1 without fixed technology costs, at least in the later periods; however, with 

technology TS appears to have higher efficiency than all three market trading institutions.  

Overall, levels of efficiency for all institutions appear higher under No Tech than under 

Tech, indicating the presence of a technology effect.  Further evidence of such a 

technology effect is observed in Figure 3.2, which plots mean group efficiency for each 

period by Tech and No Tech within each institution.  Fixed technology costs appear to  
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No Technology 

 
Technology 

 

Figure 3.1 Mean efficiency by institution by technology 
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Figure 3.2 Mean efficiency within-institution by technology
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lower efficiency in all institutions; however, consistent with Figure 3.1 the effect seems 

to be the strongest in CAT, BAC-1, and BAC-2. 

 In order to systematically investigate efficiency across treatments we ran OLS 

regressions of efficiency on indicators for the eight treatments interacted with an 

indicator variable for the first and last five periods.  We observe efficiency for each group 

in each period, for a total of 340 observations.  The estimated model is specified as:  

                                                 

 

   

                                                    

                                                   
 

     

where              is the efficiency observed for group   in period  , and    
 

 is an 

indicator variable for whether the observation of group   in period   is part of the first or 

last five periods.  The results are presented in Table 3.2.  Across all ten periods, the 

efficiencies with No Tech are 96.57% with TS, 94.81% with CAT, 90.99% with BAC-1, 

and 72.80% with BAC-2.  With Tech, efficiencies were 92.49% with TS, 74.39% with 

CAT, 72.52% with BAC-1, and 54.60% with BAC-2.  These estimates are consistent 

with the observations made regarding Figures 3.1 and 3.2.   

Table 3.3 presents pairwise tests of equal efficiencies across the institutions by 

technology.  First examining the No Tech treatments for all periods, the tests indicate that 

efficiency under the TS is indeed not statistically different from efficiency under CAT;  
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Table 3.2 Efficiency 

Treatment All Periods 1
st
 5 Periods 2

nd
 5 Periods 

    

No Technology    

    

TS 96.57
***

 

(1.32) 

94.99
***

 

(1.78) 

98.15
***

 

(0.89) 

    

CAT 94.81
***

 

(2.03) 

92.04
***

 

(3.71) 

97.57
***

 

(0.57) 

    

BAC-1 90.99
***

 

(2.25) 

85.98
***

 

(4.45) 

96.01
***

 

(0.62) 

    

BAC-2 72.80
***

 

(5.26) 

58.04
***

 

(10.00) 

87.55
***

 

(2.57) 

    

Technology    

    

TS 92.49
***

 

(0.49) 

87.97
***

 

(2.05) 

97.01
***

 

(1.23) 

    

CAT 74.39 
***

 

(5.52) 

62.90
***

 

(7.26) 

85.89
***

 

(6.72) 

    

BAC-1 72.52
***

 

(5.49) 

63.92
***

 

(5.56) 

81.13
***

 

(5.96) 

    

BAC-2 54.60
***

 

(8.32) 

42.03
***

 

(8.93) 

67.17
***

 

(9.28) 

    

N 340   

F 14717.20
***   

R
2 

0.95   
(1) The dependent variable is the efficiency observed in each eight-subject market in each period, where 

efficiency is defined as the observed gains from trade as a percentage of the maximum possible gains from 

trade. 

(2) Clustered robust standard errors are in parentheses.  ***p < 0.01. 
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Table 3.3 Efficiency: tests of institution effect by technology 

Hypothesis All Periods 1
st
 5 Periods 2

nd
 5 Periods 

    

No Technology    

    

HO: TS = CAT 1.76 

(2.42) 

2.95  

(4.12) 

0.57
 

(1.06) 

    

HO: TS = BAC-1 

 

5.57
** 

(2.61) 

9.01
* 

(4.79) 

2.14
* 

(1.09) 

    

HO: TS = BAC-2  

 

23.77
*** 

(5.43) 

36.95
*** 

(10.16) 

10.59
*** 

(2.72) 

    

HO: CAT = BAC-1 

 

3.81 

(3.03) 

6.06 

(5.80) 

1.56
* 

(0.84) 

    

HO: CAT = BAC-2  

 

22.01
***

  

(5.64) 

34.00
*** 

(10.67) 

10.02
*** 

(2.64) 

    

HO: BAC-1 = BAC-2  

 

18.20
***

  

(5.72) 

27.94
** 

(10.95) 

8.46
*** 

(2.65) 

    

Technology    

    

HO: TS = CAT 18.10
***

  

(5.54) 

25.07
*** 

(7.54) 

11.13
 

(6.83) 

    

HO: TS = BAC-1 

 

19.97
*** 

(5.52) 

24.06
*** 

(5.92) 

15.89
** 

(6.08) 

    

HO: TS = BAC-2  

 

37.89
*** 

(8.33) 

45.94
*** 

(9.16) 

29.84
*** 

(9.36) 

    

HO: CAT = BAC-1 

 

1.87 

(7.79) 

-1.01 

(9.14) 

4.76 

(8.98) 

    

HO: CAT = BAC-2  

 

19.79
*
  

(9.98) 

20.88
* 

(11.51) 

18.71 

(11.46) 

    

HO: BAC-1 = BAC-2  

 

17.92
* 

(9.97) 

21.89
** 

(10.52) 

13.95 

(11.03) 

(1) Results are the differences between the coefficients in Table 3.2. 

(2) Standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 
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however, the TS efficiency is significantly higher than BAC-1 efficiency by 5.57 

percentage points.  We also confirm that CAT and BAC-1 are not significantly different 

from each other, and that TS, CAT, and BAC-1 are all significantly more efficient than 

BAC-2, by amounts of 23.77, 22.01, and 18.20 percentage points, respectively.  With 

Tech, the TS does produce significantly higher efficiency than the market trading 

institutions, 18.10 percentage points higher than CAT, 19.97 points higher than BAC-1, 

and 37.89 points higher than BAC-2.  CAT and BAC-1 are not significantly different 

from each other, and both have higher efficiency than BAC-2 at margins of 19.79 

percentage points and 17.92 points, respectively, although these differences are only 

marginally significant.  Looking at the first and last five periods in Tables 3.2 and 3.3, 

efficiencies appear to be increasing over time, but for the most part the rankings of 

efficiencies under the treatments do not change from those across all 10 periods.   

For further evidence on the impact of fixed technology costs we present tests of equal 

efficiencies across the two treatments associated with each institution in Table 3.4.  From 

these we see that technology significantly lowers efficiency in all institutions, but the 

magnitude of the technology effect appears much smaller under the TS than under the 

other institutions.  While fixed technology costs lower efficiency in the TS by 4.08 

percentage points, efficiencies under CAT, BAC-1, and BAC-2 are respectively 20.41, 

18.47, and 18.20 points lower. Furthermore, the last five periods in Table 3.4 show that 

the technology effect eventually dissipates to insignificance under the TS, but remains 

statistically significant in CAT, BAC-1, and BAC-2, lowering efficiencies by 11.69, 

14.89, and 20.38 percentage points, respectively, relative to the case of no fixed 

technology costs. 
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Table 3.4 Efficiency: tests of technology effect by institution 

Hypothesis All Periods 1
st
 5 Periods 2

nd
 5 Periods 

    

TS    

HO: No Tech = Tech  

 

4.08
*** 

(1.41) 

7.02
**

  

(2.71) 

1.14
 

(1.52) 

    

CAT    

HO: No Tech = Tech  

 

20.41
*** 

(5.88) 

29.14
***

  

(8.15) 

11.69
* 

(6.74) 

    

BAC-1    

HO: No Tech = Tech  

 

18.47
*** 

(5.94) 

22.06
***

  

(7.12) 

14.89
** 

(5.99) 

    

BAC-2    

HO: No Tech = Tech  

 

18.20
* 

(9.84) 

16.01
 

(13.41) 

20.38
** 

(9.63) 

(1) Results are the differences between the coefficients in Table 3.2. 

(2) Standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 
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The results are largely consistent with our expectations.  BAC-2 is the only institution 

that requires subjects wishing to obtain credits to sell to make a binding abatement pre-

commit, and we see that this institution is significantly less efficient than the other 

institutions both without and with fixed technology costs.  While BAC-1 is similar to 

BAC-2 in that subjects initially have no credits to sell, the fact that the proposal of 

abatement is non-binding makes the institution functionally similar to CAT in that 

subjects are able to determine actual abatement in the market.  Thus we expected that 

BAC-1 and CAT would be similarly efficient, as they indeed were.  With regard to fixed 

technology costs, we were surprised to find that Tech lowered efficiency even under the 

TS, given that this mechanism is not subject to market uncertainty.  However, for the 

same reason we were not surprised that in the presence of Tech the TS had higher 

efficiency than CAT, BAC-1, BAC-2. 

 

Analysis of Efficiency Variance. As a further investigation of the efficiency implications 

of these institutions and the effects of fixed technology cost, we also analyzed the 

variance of efficiency.  We calculated the variance of efficiency, using a formula similar 

to the one stated in Gilpatric et al. (2011), as the squared difference between a group’s 

period efficiency and the period mean efficiency for a particular treatment.  Specifically, 

the variance of efficiency for a particular treatment is specified as               

                         
  
 , where               is the observed efficiency for group   in period  , 

and                          
  is the mean efficiency for that treatment in period  . We ran OLS 

regressions on the same set of regressors as those specified for the efficiency outcome 

regressions, and we present the results in Table 3.5.  Tables 3.6 and 3.7 present tests of  
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Table 3.5 Variance of efficiency 

Treatment All Periods 1
st
 5 Periods 2

nd
 5 Periods 

    

No Technology    

    

TS 0.17
**

 

(0.08) 

0.31
**

 

(0.14) 

0.03
*
 

(0.02) 

    

CAT 0.43
*
 

(0.22) 

0.83
*
 

(0.44) 

0.02
***

 

(0.01) 

    

BAC-1 1.20
**

 

(0.58) 

2.35
*
 

(1.15) 

0.06
***

 

(0.02) 

    

BAC-2 2.98
***

 

(0.23) 

5.44
***

 

(0.48) 

0.53
***

 

(0.04) 

    

Technology    

    

TS 0.34
***

 

(0.08) 

0.58
***

 

(0.13) 

0.09
**

 

(0.04) 

    

CAT 3.13
***

 

(0.79) 

4.44
***

 

(1.29) 

1.82
*
 

(0.97) 

    

BAC-1 1.68
***

 

(0.55) 

1.52
**

 

(0.65) 

1.84
***

 

(0.47) 

    

BAC-2 7.66
**

 

(3.37) 

7.01
**

 

(2.87) 

8.30 

(5.37) 

    

N 340   

F 35.45
***   

R
2 

0.17   

(1) The dependent variable is the variance of efficiency, calculated as the squared difference 

between a group’s period efficiency and the period mean efficiency for that treatment. 

(2) Clustered robust standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 
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Table 3.6 Variance of efficiency: tests of institution effect by technology 

Hypothesis All Periods 1
st
 5 Periods 2

nd
 5 Periods 

    

No Technology    

    

HO: TS = CAT -0.26 

(0.23) 

-0.52
 

(0.46) 

0.01
 

(0.02) 

    

HO: TS = BAC-1 

 

-1.03
* 

(0.59) 

-2.03
* 

(1.16) 

-0.03
 

(0.02) 

    

HO: TS = BAC-2  

 

-2.81
*** 

(0.25) 

-5.13
*** 

(0.50) 

-0.49
*** 

(0.05) 

    

HO: CAT = BAC-1 

 

-0.77 

(0.62) 

-1.51 

(1.23) 

-0.03 

(0.02) 

    

HO: CAT = BAC-2  

 

-2.55
*** 

(0.32) 

-4.61
*** 

(0.65) 

-0.50
*** 

(0.05) 

    

HO: BAC-1 = BAC-2  

 

-1.78
*** 

(0.63) 

-3.09
** 

(1.25) 

-0.47
*** 

(0.05) 

    

Technology    

    

HO: TS = CAT -2.79
*** 

(0.80) 

-3.85
*** 

(1.29) 

-1.73
* 

(0.97) 

    

HO: TS = BAC-1 

 

-1.34
** 

(0.56) 

-0.94 

(0.67) 

-1.75
*** 

(0.47) 

    

HO: TS = BAC-2  

 

-7.32
** 

(3.37) 

-6.43
** 

(2.87) 

-8.21
 

(5.37) 

    

HO: CAT = BAC-1 

 

1.45 

(0.97) 

2.91
* 

(1.44) 

-0.02 

(1.08) 

    

HO: CAT = BAC-2  

 

-4.53
 

(3.46) 

-2.57
 

(3.14) 

-6.48 

(5.46) 

    

HO: BAC-1 = BAC-2  

 

-5.98
* 

(3.41) 

-5.49
* 

(2.94) 

-6.46 

(5.39) 

(1) Results are the differences between the coefficients in Table 3.5. 

(2) Standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 
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Table 3.7 Variance of efficiency: tests of technology effect by institution 

Hypothesis All Periods 1
st
 5 Periods 2

nd
 5 Periods 

    

TS    

HO: No Tech = Tech  

 

-0.17 

(0.11) 

-0.27
 

(0.20) 

-0.06
 

(0.04) 

    

CAT    

HO: No Tech = Tech  

 

-2.70
*** 

(0.82) 

-3.60
** 

(1.36) 

-1.80
* 

(0.97) 

    

BAC-1    

HO: No Tech = Tech  

 

-0.48
 

(0.80) 

0.82
 

(1.32) 

-1.78
*** 

(0.47) 

    

BAC-2    

HO: No Tech = Tech  

 

-4.67 

(3.38) 

-1.57 

(2.91) 

-7.78 

(5.37) 

(1) Results are the differences between the coefficients in Table 3.5. 

(2) Standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 
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the regression coefficients to identify the effects of institution by technology and the 

effects of technology within institution, respectively.   

When all ten periods are considered, there are three interesting observations.  First, in 

the No Tech treatments, the variance of efficiency under BAC-2 (2.98 percentage points) 

is significantly higher than the variance of efficiency under the other three institutions 

(2.81 percentage points higher than in the TS, 2.55 points higher than in CAT, and 1.78 

points higher than in BAC-1). In the Tech treatments, the variance under BAC-2 (7.66 

percentage points) is significantly higher than under the TS (by 7.32 percentage points) 

and marginally significantly higher than under BAC-1 (by 5.98 percentage points).  

Second, in the Tech treatments the TS has significantly lower variance of efficiency than 

the other three institutions: 0.34 percentage points compared with 3.13, 1.68, and 7.66 

points respectively in CAT, BAC-1, and BAC-2. Third, the CAT is the only institution in 

which fixed technology costs exhibit a significant effect on the variance of efficiency, 

increasing the variance by 2.70 percentage points relative to No Tech.   

The first two observations reinforce the rankings of the institutions from the analysis 

of mean efficiencies.  The first observation indicates that not only does BAC-2 exhibit 

significantly lower mean efficiency than the other institutions under both Tech and No 

Tech, it also exhibits significantly higher variance than under all other cases except for 

CAT with Tech.  The second observation demonstrates that in the presence of fixed 

technology costs, the TS is more robust than the other institutions not only in terms of 

higher mean efficiency, but also in terms of lower variance of efficiency.  While we do 

not have a ready explanation for the third observation, it is clearly the reason why the 
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variance of efficiency under BAC-2 is not statistically different from the variance of 

efficiency under CAT in the Tech treatments. 

 

Analysis of Individual Decisions.  In addition to the analysis of group efficiency we also 

conducted an examination of individual-level abatement.  In particular we investigated 

the deviations of individual abatement from the efficient levels of abatement by type.  At 

the competitive equilibrium Type 1’s abate three units, Type 2’s abate five units, Type 

3’s abate seven units, and Type 4’s abate nine units.  We calculate deviations from 

expected by subtracting these competitive equilibrium levels from the levels actually 

observed in the experiment.  We regressed these deviations on a full set of interactions 

between treatment indicators and type indicators.  Regression results are presented in 

Table 3.8. 

   Type 1’s and 2’s are buyers at the competitive equilibrium, while Type 3’s and 4’s 

are sellers.  What we see in Table 3.8 is that mean deviations from expected abatement 

are all positive for the buyers and are all negative for the sellers, which means that on 

average the buyers are overabating in all treatments, while the sellers are underabating.  

The extent to which the buyer types are deviating relative to each other and the extent to 

which the seller types are deviating relative to each other are addressed in Tables 3.9 and 

3.10, respectively.  Cases in which we might expect to see type-specific differences in 

deviations from abatement between seller types are in the Tech treatments.  Given their 

respective credit allocations/baselines and their efficient levels of abatement, Type 3’s 

would have had to switch from low to high fixed technology costs in order to abate at the 

efficient level, where as Type 4’s would have started at high fixed technology costs and  
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Table 3.8 Deviations from expected abatement by type 

Treatment Type 1 Type 2 Type 3 Type 4 

     

No Technology     

     

TS 0.06 

(0.13) 

0.50 

(0.44) 

0.00  

(0.02) 

-0.21
*
 

(0.11) 

     

CAT 0.10
***

 

(0.03) 

0.33
*
 

(0.17) 

-0.31
*
 

(0.17) 

-0.11
***

 

(0.03) 

     

BAC-1 0.09 

(0.09) 

0.84
***

 

(0.26) 

-0.60
***

 

(0.18) 

-0.33
***

 

(0.08) 

     

BAC-2 0.68
**

 

(0.32) 

1.84
***

 

(0.28) 

-1.09
***

 

(0.20) 

-1.24
***

 

(0.15) 

     

Technology     

     

TS 0.06
***

 

(0.02) 

0.06 

(0.08) 

-1.18
***

 

(0.30) 

-0.31 

(0.21) 

     

CAT 0.88
***

 

(0.16) 

1.44
***

 

(0.33) 

-1.36
***

 

(0.42) 

-0.95
***

 

(0.21) 

     

BAC-1 0.66
**

 

(0.29) 

2.31
***

 

(0.32) 

-2.16
***

 

(0.44) 

-0.81
***

 

(0.08) 

     

BAC-2 1.29
***

 

(0.31) 

2.06
***

 

(0.37) 

-1.58
***

  

(0.28) 

-1.52
***

  

(0.33) 

     

N 2720    

(1) The dependent variable is the difference between observed individual abatement and individual 

abatement at the competitive equilibrium. 

(2) Clustered robust standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 
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Table 3.9 Comparison of buyer types: Type1 deviation – Type2 deviation 

Institution No Technology Technology 

   

TS -0.44 

(0.33) 

0.00 

(0.10) 

   

CAT -0.23 

(0.19) 

-0.56 

(0.35) 

   

BAC-1 -0.75
** 

(0.34) 

-1.65
***

 

(0.33) 

   

BAC-2 -1.16
**

 

(0.50) 

-0.77
**

 

(0.36) 
 (1) Clustered robust standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 

 

 

 

Table 3.10 Comparison of seller types: Type3 deviation – Type4 deviation 

Institution No Technology Technology 

   

TS 0.21
** 

(0.10) 

-0.86
* 

(0.49) 

   

CAT -0.20  

(0.19) 

-0.41 

(0.54) 

   

BAC-1 -0.28
 

(0.21) 

-1.35
***

 

(0.37) 

   

BAC-2 0.15 

(0.11) 

-0.06 

(0.22) 
 (1) Clustered robust standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 
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therefore would not have had to cross this threshold.  If the necessity to cross the 

threshold made Type 3’s reluctant to invest we may have seen them underabating more 

than the Type 4’s.   

First examining the differences in deviations between Type 1’s and 2’s in Table 3.9, 

the tests indicate that Type 2’s are overabating significantly more than Type 1’s under 

BAC-1 and BAC-2 under both No Tech and Tech.  The tests in Table 3.10 show that 

Type 3’s are underabating significantly more than Type 4’s under the TS and BAC-1 

with Tech, while the Type 4’s are underabating significantly more than Type 3’s under 

the TS with No Tech.  Therefore we do see weak evidence for the pattern of 

underabatement by Type3’s relative to Type 4’s described above: with fixed technology 

costs, Type 3’s underabated more than Type 4’s under all institutions, but the differences 

were only significant under the TS and BAC-1. 

 As a final step in analyzing individual abatement we grouped the types into 

(expected) buyers and sellers, and regressed deviations in expected abatement on a full 

set of interactions between treatment indicators and indicators for buyer and seller.  

Examining the results in Table 3.11 provides a look at the overabatement by buyers and 

the underabatement by sellers under each treatment.  In CAT and BAC-1 the mean 

overabatement by buyers is exactly equal to the mean underabatement by sellers.  

Because abatement was determined solely on the basis of established market trades under 

these institutions it was necessarily the case that the aggregate abatement target was 

exactly met.  This was not the case however under the TS or BAC-2.  With the TS the 

aggregate abatement target could either be exceeded or could fail to be met, since the TS 

does not constrain the number of credits bought to equal the number sold. The TS  



 

 90 

Table 3.11 Deviations from expected abatement by buyers and sellers 

Treatment Buyer Seller 

   

No Technology   

   

TS 0.28 

(0.27) 

-0.11
* 

(0.06) 

   

CAT 0.21
***

 

(0.07) 

-0.21
***

 

(0.07) 

   

BAC-1 0.46
***

  

(0.09) 

-0.46
***

 

(0.09) 

   

BAC-2 1.26
***

 

(0.16) 

-1.16
***

 

(0.17) 

   

Technology   

   

TS 0.06 

(0.04) 

-0.74
*** 

(0.08) 

   

CAT 1.16
***

 

(0.19) 

-1.16
***

 

(0.19) 

   

BAC-1 1.49
***

 

(0.26) 

-1.49
***

 

(0.26) 

   

BAC-2 1.68
***

 

(0.29) 

-1.55
***

 

(0.28) 

   

N 2720  

(1) The dependent variable is the difference between observed individual abatement and individual 

abatement at the competitive equilibrium. 

(2) Clustered robust standard errors are in parentheses.  *p < 0.10; **p < 0.05; ***p < 0.01. 
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resulted in aggregate overabatement without technology, and aggregate underabatement 

with technology, as buyers overabated more than sellers underabated in the first case, and 

vice versa in the second.  In BAC-2, because subjects had to pre-commit to abatement in 

order to generate credits to sell, it was possible to have aggregate overabatement, and that 

is what was observed.  Aggregate underabatement was not possible in BAC-2. 

 

3.5 Conclusion 

 

 In contrast to the markets for air quality whose successes have contributed to the 

EPA’s endorsement and support of WQT initiatives for more than decade, there are few 

success stories among the many U.S. watersheds that have attempted to establish WQT. 

Yet there are fundamental differences between the markets for air quality and those for 

water quality, and we have a much better understanding of air quality markets than we do 

of water quality markets.  The latter fact is largely thanks to a sizable literature of 

economic experiments that has systematically evaluated the effects of institutional 

features related to the U.S. SO2 Trading Program.  In comparison, there is little empirical 

evidence on WQT institutions.   

The experiment reported in this paper provides empirical evidence that enhances the 

understanding of WQT markets. The experiment evaluates the relative performance of 

three common WQT institutions and the standard cap-and-trade institution used in air 

quality markets.  In addition it studies the effect of fixed technology costs within in each 

of these institutions.  Overall there are four main findings.  First, relative to the other 

institutions examined, a baseline-and-credit institution that requires abatement pre-
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commitment results in significantly lower efficiency both in the presence and absence of 

fixed technology costs, and in most cases results in higher variance of efficiency as well.  

Second, a baseline-and-credit institution without abatement pre-commitment exhibits 

similar efficiency as standard cap-and-trade.  The first and second findings together 

suggest that it is pre-commitment to abatement that drives inefficiency, as opposed to the 

other characteristic of baseline-and-credit which is no initial credit allocation.  Third, the 

presence of fixed technology costs significantly reduces efficiency in all of the 

institutions examined.  This result provides a contribution to the experimental literature 

on air quality markets as well as the literature on WQT, as to the authors’ knowledge the 

effects of fixed technology costs on cap-and-trade have not been previously studied.  

Fourth, in the presence of fixed technology costs, efficiency under a tax/subsidy is 

significantly higher and has significantly lower variance than under the other institutions 

examined, which we attribute to the fact that the tax/subsidy does not face market 

uncertainty.   

These findings provide some evidence that the baseline-and-credit institutions 

requiring abatement pre-commitment, or/and fixed costs associated with abatement 

technology, could contribute to the impediment of functioning WQT markets.  From a 

policy perspective, consideration should be given to determining the appropriateness of 

requiring abatement pre-commitment in order to generate credits in a WQT program.  

Furthermore, where high fixed technology costs are concerned, tax/subsidy may be more 

efficient than a baseline-and-credit or cap-and-trade, as the absence of market uncertainty 

appears to make the tax/subsidy more robust in such circumstances. However, the caveat 

in using tax/subsidy regulation is that the regulator’s uncertainty over the optimal 
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tax/subsidy rate (i.e. credit price) has the ability to invoke efficiency losses and distort the 

short and long-run incentives for investment in abatement technology. Indeed, the Long 

Island Sound Trading Program has required the state to deal with large imbalances 

between the number credits purchased and sold, implying that the program has more than 

met its water quality goals in some years, and has failed to meet them in others.  For 

example, in the first four years of the program, which launched in 2002, the state 

purchased excess credits of $1.4 million, $312,000, and $873,081 in 2003, 2004, and 

2005, respectively, and then in 2006 sold an excess of $1,152,365 (Connecticut State 

Treasury 2003, 2004, 2005, 2006). 

While this experiment investigates several fundamental issues related to WQT 

markets, there are numerous explanations that have been postulated for the lack of 

success of WQT programs.  Thus, there are many studies to be conducted in order to 

amass the same empirical knowledge of these institutions that has been gathered on air 

quality markets.  Given the ability of experiments to parse the effects of particular 

institutional features and the lack of sufficient real world data on WQT markets, 

experiments should have a central role in identifying the factors that are causing WQT 

markets to fail and in generating insights on how to establish them for success. 
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