Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/56245Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Le Thi Phuong Ngoc | - |
| dc.contributor.author | Le Huu Ky Son | - |
| dc.contributor.author | Tran Minh Thuyet | - |
| dc.contributor.author | Nguyen Thanh Long | - |
| dc.date.accessioned | 2017-11-03T10:13:45Z | - |
| dc.date.available | 2017-11-03T10:13:45Z | - |
| dc.date.issued | 2016 | - |
| dc.identifier.issn | 1024-123X (Print), 1026-7077 (CD-ROM) | - |
| dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/56245 | - |
| dc.description.abstract | This paper is devoted to the study of a nonlinear Carrier wave equation in an annular membrane associated with Robin-Dirichlet conditions. Existence and uniqueness of a weak solution are proved by using the linearization method for nonlinear terms combined with the Faedo-Galerkin method and the weak compact method. Furthermore, an asymptotic expansion of a weak solution of high order in a small parameter is established. | en |
| dc.format | Portable Document Format (PDF) | - |
| dc.language.iso | eng | - |
| dc.publisher | Hindawi Publishing | - |
| dc.relation.ispartof | Mathematical Problems in Engineering | - |
| dc.relation.ispartofseries | Vol. 2016 | - |
| dc.rights | Hindawi Publishing Corporation, London, UK | - |
| dc.subject | N/A | en |
| dc.title | Linear approximation and asymptotic expansion of solutions for a nonlinear carrier wave equation in an annular membrane with Robin-Dirichlet conditions | en |
| dc.type | Journal Article | en |
| dc.identifier.doi | http://dx.doi.org/10.1155/2016/8031638 | - |
| ueh.JournalRanking | ISI, Scopus, ABDC | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| item.grantfulltext | none | - |
| item.fulltext | Only abstracts | - |
| item.languageiso639-1 | en | - |
| item.openairetype | Journal Article | - |
| Appears in Collections: | INTERNATIONAL PUBLICATIONS | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU
Login