Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/65262
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNgo Minh Vu-
dc.contributor.otherToan L. D. Huynh-
dc.contributor.otherPhuc V. Nguyen-
dc.contributor.otherNguyen Huu Huan-
dc.date.accessioned2022-10-27T02:33:57Z-
dc.date.available2022-10-27T02:33:57Z-
dc.date.issued2022-
dc.identifier.issn0036-9292 (Print), 1467-9485 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/65262-
dc.description.abstractThis paper introduces novel data on public sentiment to-wards economic sanctions based on nearly 1 million social media posts in 108 countries during the Russia–Ukraine war by using machine learning. We show the geographi-cal heterogeneity between government stances and public sentiment. Finally, we show how political regimes, trading relationships and political instability can predict how peo-ple perceive this war.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons Ltd.-
dc.relation.ispartofScottish Journal of Political Economy-
dc.relation.ispartofseriesVol. 69, Issue 5-
dc.rightsThe Authors-
dc.subjectDemocracyen
dc.subjectPublic sentimenten
dc.subjectRussia–Ukraineen
dc.titlePublic sentiment towards economic sanctions in the Russia–Ukraine waren
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1111/sjpe.12331-
dc.format.firstpage564-
dc.format.lastpage573-
ueh.JournalRankingScopus-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.