Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/73651
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKy Ho-
dc.contributor.otherPatrick Winkert-
dc.date.accessioned2025-01-21T04:12:26Z-
dc.date.available2025-01-21T04:12:26Z-
dc.date.issued2023-
dc.identifier.issn0944-2669 (Print), 1432-0835 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/73651-
dc.description.abstractIn this paper we present new embedding results for Musielak–Orlicz Sobolev spaces of double phase type. Based on the continuous embedding of W1,H() into LH∗ (), where H∗ is the Sobolev conjugate function of H, we present much stronger embeddings as known in the literature. Based on these results, we consider generalized double phase problems involving such new type of growth with Dirichlet and nonlinear boundary condition and prove appropriate boundedness results of corresponding weak solutions based on the De Giorgi iteration along with localization arguments.en
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofCalculus of Variations and Partial Differential Equations-
dc.relation.ispartofseriesVol. 62, No. 227-
dc.rightsSpringer Nature-
dc.subjectDouble Phase Problemsen
dc.subjectVariable Exponentsen
dc.subjectGeneralized Double Phase Problemsen
dc.subjectEmbedding Results|A Priori Boundsen
dc.titleNew embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problemsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1007/s00526-023-02566-8-
dc.format.firstpage1-
dc.format.lastpage38-
ueh.JournalRankingISI, Scopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.