Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/73651
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ky Ho | - |
dc.contributor.other | Patrick Winkert | - |
dc.date.accessioned | 2025-01-21T04:12:26Z | - |
dc.date.available | 2025-01-21T04:12:26Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0944-2669 (Print), 1432-0835 (Online) | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/73651 | - |
dc.description.abstract | In this paper we present new embedding results for Musielak–Orlicz Sobolev spaces of double phase type. Based on the continuous embedding of W1,H() into LH∗ (), where H∗ is the Sobolev conjugate function of H, we present much stronger embeddings as known in the literature. Based on these results, we consider generalized double phase problems involving such new type of growth with Dirichlet and nonlinear boundary condition and prove appropriate boundedness results of corresponding weak solutions based on the De Giorgi iteration along with localization arguments. | en |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | Calculus of Variations and Partial Differential Equations | - |
dc.relation.ispartofseries | Vol. 62, No. 227 | - |
dc.rights | Springer Nature | - |
dc.subject | Double Phase Problems | en |
dc.subject | Variable Exponents | en |
dc.subject | Generalized Double Phase Problems | en |
dc.subject | Embedding Results|A Priori Bounds | en |
dc.title | New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1007/s00526-023-02566-8 | - |
dc.format.firstpage | 1 | - |
dc.format.lastpage | 38 | - |
ueh.JournalRanking | ISI, Scopus | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | Only abstracts | - |
item.openairetype | Journal Article | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.