Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/73669
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu-Tian Lei-
dc.contributor.otherChao-Qun Ma-
dc.contributor.otherYi-Shuai Ren-
dc.contributor.otherXun-Qi Chen-
dc.contributor.otherSeema Narayan-
dc.contributor.otherAnh Ngoc Quang Huynh-
dc.date.accessioned2025-01-21T04:12:31Z-
dc.date.available2025-01-21T04:12:31Z-
dc.date.issued2023-
dc.identifier.issn1544-6123 (Print), 1544-6131 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/73669-
dc.description.abstractThis paper develops a distributed neural network model (DDNN) for detecting credit card fraud to federate credit card transaction data among different financial institutions. In addition, the convergence of the DDNN model is achieved by introducing a model optimization algorithm. The results demonstrate that (1) The use of a distributed model can avoid privacy leakage and data handling costs; (2) The DDNN model accelerates the convergence of the model through simultaneous computation of multiple clients; (3) The DDNN model detects credit card fraud better than multiple types of centralized models.en
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.ispartofFinance Research Letters-
dc.relation.ispartofseriesVol. 58, Part. C-
dc.rightsElsevier-
dc.subjectCredit Card Fraud Detectionen
dc.subjectDeep Neural Networksen
dc.subjectDistributed Computingen
dc.subjectMachine Learning Algorithmsen
dc.titleA distributed deep neural network model for credit card fraud detectionen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.frl.2023.104547-
ueh.JournalRankingISI, Scopus-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.cerifentitytypePublications-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.