Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/73742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDo Tan Duc-
dc.contributor.otherLe Xuan Truong-
dc.date.accessioned2025-01-21T04:12:56Z-
dc.date.available2025-01-21T04:12:56Z-
dc.date.issued2023-
dc.identifier.issn2737-0690 (Print), 2737-144X (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/73742-
dc.description.abstractLetd∈ {3,4,5, . . .}. ConsiderL=−1wdiv(A∇u) +μover its maximal domaininL2w(Rd). Under certain conditions on the weightw, the coefficient matrixAand the positiveRadon measureμwe obtain upper and lower bounds onN(λ, L)—the number of eigenvalues ofLthat are at mostλ≥1. Furthermore we show that the eigenfunctions ofLcorresponding to thoseeigenvalues are exponentially decaying. In the course of proofs, we develop generalized Poincaréand weighted Young convolution inequalities as the main tools for the analysis.en
dc.language.isoeng-
dc.publisherAnnales Fennici Mathematici-
dc.relation.ispartofAnnales Fennici Mathematici-
dc.relation.ispartofseriesVol. 48-
dc.rightsAnnales Fennici Mathematici-
dc.subjectGeneralized Schrödinger operatoren
dc.subjectGeneralized Poincaré inequalityen
dc.subjectWeighted Young convolution inequalityen
dc.subjectEigenvalue asymptoticen
dc.subjectExponential decayen
dc.titleSpectral asymptotics for generalized Schrödinger operatorsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.54330/afm.140863-
dc.format.firstpage703-
dc.format.lastpage727-
ueh.JournalRankingISI, Scopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.