Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/73942
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTan Duc Do-
dc.contributor.otherLe Xuan Truong-
dc.date.accessioned2025-02-10T08:57:39Z-
dc.date.available2025-02-10T08:57:39Z-
dc.date.issued2024-
dc.identifier.issn1607-3606-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/73942-
dc.description.abstractLet d ∈ ℕ. Let C = (c_kl)_1≤k,l≤d ∈ W^(1,∞)_loc(ℝ^d, ℝ^(d×d)), W = (w_k)_1≤k≤d ∈ W^(1,∞)_loc(ℝ^d, ℝ^d) and V ∈ L^∞_loc(ℝ^d, ℝ). Consider the formal second-order differential operator Au = -div(C∇u) + W∇u + Vu in L^1(ℝ^d). We show that the closure of (A, C_c^∞(ℝ^d)) is quasi-m-accretive under certain conditions on the coefficients.en
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.ispartofQuaestiones Mathematicae-
dc.rightsInforma UK Limited-
dc.subjectPartial Differential Equationsen
dc.subjectFunctional Analysisen
dc.subjectMathematical Physicsen
dc.subjectOperator Theoryen
dc.subjectApplied Mathematicsen
dc.subjectMathematical Modelingen
dc.titleUniqueness of second-order elliptic operators with unbounded and degenerate coefficients in L1-spacesen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.2989/16073606.2024.2344706-
dc.format.firstpage1775-
dc.format.lastpage1790-
ueh.JournalRankingScopus; ISI-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.cerifentitytypePublications-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.