Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/73942
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tan Duc Do | - |
dc.contributor.other | Le Xuan Truong | - |
dc.date.accessioned | 2025-02-10T08:57:39Z | - |
dc.date.available | 2025-02-10T08:57:39Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1607-3606 | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/73942 | - |
dc.description.abstract | Let d ∈ ℕ. Let C = (c_kl)_1≤k,l≤d ∈ W^(1,∞)_loc(ℝ^d, ℝ^(d×d)), W = (w_k)_1≤k≤d ∈ W^(1,∞)_loc(ℝ^d, ℝ^d) and V ∈ L^∞_loc(ℝ^d, ℝ). Consider the formal second-order differential operator Au = -div(C∇u) + W∇u + Vu in L^1(ℝ^d). We show that the closure of (A, C_c^∞(ℝ^d)) is quasi-m-accretive under certain conditions on the coefficients. | en |
dc.language.iso | eng | - |
dc.publisher | Taylor & Francis | - |
dc.relation.ispartof | Quaestiones Mathematicae | - |
dc.rights | Informa UK Limited | - |
dc.subject | Partial Differential Equations | en |
dc.subject | Functional Analysis | en |
dc.subject | Mathematical Physics | en |
dc.subject | Operator Theory | en |
dc.subject | Applied Mathematics | en |
dc.subject | Mathematical Modeling | en |
dc.title | Uniqueness of second-order elliptic operators with unbounded and degenerate coefficients in L1-spaces | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.2989/16073606.2024.2344706 | - |
dc.format.firstpage | 1775 | - |
dc.format.lastpage | 1790 | - |
ueh.JournalRanking | Scopus; ISI | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Journal Article | - |
item.fulltext | Only abstracts | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.