Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/73957
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi Zhang-
dc.contributor.otherLu Wang-
dc.contributor.otherThong Trung Nguyen-
dc.contributor.otherRuiyi Ren-
dc.date.accessioned2025-02-10T08:57:43Z-
dc.date.available2025-02-10T08:57:43Z-
dc.date.issued2024-
dc.identifier.issn1544-6123-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/73957-
dc.description.abstractThis paper utilizes a hybrid model to analyze the impression of information from the GECON indicator on the volatility prediction of the clean energy market. The model architecture is constructed by embedding a recurrent neural network (RNN) into the GARCH-MIDAS model. The results show that RNN-GARCH-MIDAS-GECON achieves optimal ranking in volatility prediction. This work confirms the advantages of embedded hybrid integrated models in capturing nonlinear information in financial markets and achieving significant progress in volatility forecasts. Notably, this research will help to promote the construction of clean energy development and energy transition pathways.en
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.ispartofFinance Research Letters-
dc.relation.ispartofseriesVol. 70-
dc.rightsElsevier-
dc.subjectFinancial Marketsen
dc.subjectVolatility Predictionen
dc.subjectHybrid Modelsen
dc.subjectClean Energyen
dc.subjectRecurrent Neural Networksen
dc.subjectGARCH-MIDASen
dc.subjectEnergy Transitionen
dc.titleVolatility forecasting of clean energy ETF using GARCH-MIDAS with neural network modelen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.frl.2024.106286-
dc.format.firstpage1-
dc.format.lastpage13-
ueh.JournalRankingScopus; ISI-
item.grantfulltextnone-
item.fulltextOnly abstracts-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.