Title: | OPTIMAL ESTIMATES IN MUSIELAK-ORLICZ SPACES FOR A PARABOLIC SCHRODINGER EQUATION |
Author(s): | Le Xuan Truong |
Keywords: | Parabolic Schrödinger Equation; Musielak-Orlicz Function; Strong Solution; Potential Function; Norm Estimates; Variable Exponents |
Abstract: | Let d ≥ 2 and u be a strong solution to the parabolic Schrödinger equation uₜ - Δu + Vu = f in ℝᵈₜ := ℝᵈ × (0, T]. We show that uₜ _L^(φ) (ℝᵈₜ) + D²u _L^(φ) (ℝᵈₜ) + Vu _L^(φ) (ℝᵈₜ) ≤ C f _L^(φ) (ℝᵈₜ) under suitable conditions on the Musielak-Orlicz function φ and the potential V. |
Issue Date: | 2024 |
Publisher: | Ele-Math |
Series/Report no.: | Vol. 27, No. 4 |
URI: | https://digital.lib.ueh.edu.vn/handle/UEH/73991 |
DOI: | https://doi.org/10.7153/mia-2024-27-61 |
ISSN: | 1331-4343 (Print), 1848-9966 (Online) |
Appears in Collections: | INTERNATIONAL PUBLICATIONS
|