Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/74942
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorĐặng Ngọc Hoàng Thànhen_US
dc.contributor.authorNguyễn Đôn Đứcen_US
dc.contributor.otherĐỗ Nhật Phươngen_US
dc.contributor.otherNguyễn Trần Thế Anhen_US
dc.date.accessioned2025-06-03T03:17:58Z-
dc.date.available2025-06-03T03:17:58Z-
dc.date.issued2025-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/74942-
dc.description.abstractThis research addresses emotion recognition in Vietnamese text using traditional machine learning (SVM, Logistic Regression) and deep learning (MLP, BiLSTM) models. Key contributions include a comprehensive emotion recognition pipeline with preprocessing techniques like stopword removal, teencode normalization, and emoji handling. The study demonstrates that TF-IDF embeddings yield high performance in traditional models, while BiLSTM with Word2Vec excels in capturing sequential relationships. The models were deployed on Streamlit Cloud for real-time emotion prediction. This work highlights the potential applications of this research in Vietnamese emotion analysis on social, supporting businesses and researchers in understanding user opinions effectivelyen_US
dc.format.medium41 p.en_US
dc.language.isoenen_US
dc.publisherUniversity of Economics Ho Chi Minh Cityen_US
dc.relation.ispartofseriesGiải thưởng Nhà nghiên cứu trẻ UEH 2025en_US
dc.subjectSentiment Analysisen_US
dc.subjectFacebooken_US
dc.subjectSVM.en_US
dc.subjectLogistic Regressionen_US
dc.subjectBiLSTM.en_US
dc.titleEmotions classification on social media comments using machine learning and deep learning modelsen_US
dc.typeResearch Paperen_US
ueh.specialityCông nghệ thông tinen_US
ueh.awardGiải Cen_US
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.fulltextFull texts-
item.languageiso639-1en-
item.openairetypeResearch Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Nhà nghiên cứu trẻ UEH
Files in This Item:

File

Description

Size

Format

Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.