Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/76075
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTran Quang Minh-
dc.contributor.otherPham Hong Danh-
dc.contributor.otherMirelson M. Freitas-
dc.date.accessioned2025-08-28T01:53:54Z-
dc.date.available2025-08-28T01:53:54Z-
dc.date.issued2025-
dc.identifier.issn0022-0396 (Print), 1090-2732 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/76075-
dc.description.abstractIn this paper, we examine a class of semilinear Lamé systems. Initially, we establish the local existence of solutions using monotone operator theory. Under appropriate assumptions, we then demonstrate that the weak solution is unique and continuously depends on the initial data. Subsequently, by constructing a family of potential wells, we analyze the global existence, asymptotic behavior, and blow-up of solutions for both subcritical and critical initial energy levels. This method is advantageous as our stabilization estimate does not generate lower-order terms, resulting in a more concise proof of the asymptotic behavior. Finally, we establish conditions under which solutions blow up in finite time for any positive initial energy.en
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.ispartofJournal of Differential Equations-
dc.relation.ispartofseriesVol.418-
dc.rightsElsevier-
dc.subjectLamé systemen
dc.subjectA family of potential wellsen
dc.subjectGlobal existenceen
dc.subjectDecay estimateen
dc.subjectFinite time blow-upen
dc.titleLocal Hadamard well-posedness, global existence, finite time blow-up, and vacuum isolating phenomena for a generalized Lamé systemen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.jde.2024.11.040-
dc.format.firstpage374-
dc.format.lastpage458-
ueh.JournalRankingISI-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.