Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/76084
Full metadata record
DC FieldValueLanguage
dc.contributor.authorA. Bensouilah-
dc.contributor.otherG.K. Duong-
dc.contributor.otherT.E. Ghoul-
dc.date.accessioned2025-08-28T01:53:56Z-
dc.date.available2025-08-28T01:53:56Z-
dc.date.issued2025-
dc.identifier.issn0022-0396 (Print), 1090-2732 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/76084-
dc.description.abstractIn this paper, we consider the Yang-Mills heat flow on Rd×SO(d) with d≥11. Under a certain symmetry preserved by the flow, the Yang-Mills equation can be reduced to the following nonlinear equation:∂tu=∂r2u+d+1r∂ru−3(d−2)u2−(d−2)r2u3, and (r,t)∈R+×R+. We are interested in describing the singularity formation of this parabolic equation. More precisely, we aim to construct non self-similar blowup solutions in higher dimensions d≥11, and prove that the asymptotic behavior of the solution is of the formu(r,t)∼1λℓ(t)Q(rλℓ(t)), as t→T, where Q is the steady state corresponding to the boundary conditions Q(0)=−1,Q′(0)=0 and the blowup speed λℓ satisfiesλℓ(t)=(C(u0)+ot→T(1))(T−t)2ℓα as t→T,ℓ∈N+⁎,α>1. In particular, the case ℓ=1 corresponds to the stable type II blowup regime, whereas for the cases ℓ≥2 corresponds to a finite co-dimensional stable regime. Our approach here is not based on energy estimates but on a careful construction of time dependent eigenvectors and eigenvalues combined with maximum principle and semigroup pointwise estimates.en
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.ispartofJOURNAL OF DIFFERENTIAL EQUATIONS-
dc.relation.ispartofseriesVol.427-
dc.rightsElsevier-
dc.subjectBlowup solutionsen
dc.subjectFinite time blowupen
dc.subjectType II blowupen
dc.subjectGeometric heat flowsen
dc.subjectSingularityen
dc.titleNon-self similar blowup solutions to the higher dimensional Yang Mills heat flowsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.jde.2025.01.039-
dc.format.firstpage26-
dc.format.lastpage142-
ueh.JournalRankingISI-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.