Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/76084
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | A. Bensouilah | - |
dc.contributor.other | G.K. Duong | - |
dc.contributor.other | T.E. Ghoul | - |
dc.date.accessioned | 2025-08-28T01:53:56Z | - |
dc.date.available | 2025-08-28T01:53:56Z | - |
dc.date.issued | 2025 | - |
dc.identifier.issn | 0022-0396 (Print), 1090-2732 (Online) | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/76084 | - |
dc.description.abstract | In this paper, we consider the Yang-Mills heat flow on Rd×SO(d) with d≥11. Under a certain symmetry preserved by the flow, the Yang-Mills equation can be reduced to the following nonlinear equation:∂tu=∂r2u+d+1r∂ru−3(d−2)u2−(d−2)r2u3, and (r,t)∈R+×R+. We are interested in describing the singularity formation of this parabolic equation. More precisely, we aim to construct non self-similar blowup solutions in higher dimensions d≥11, and prove that the asymptotic behavior of the solution is of the formu(r,t)∼1λℓ(t)Q(rλℓ(t)), as t→T, where Q is the steady state corresponding to the boundary conditions Q(0)=−1,Q′(0)=0 and the blowup speed λℓ satisfiesλℓ(t)=(C(u0)+ot→T(1))(T−t)2ℓα as t→T,ℓ∈N+⁎,α>1. In particular, the case ℓ=1 corresponds to the stable type II blowup regime, whereas for the cases ℓ≥2 corresponds to a finite co-dimensional stable regime. Our approach here is not based on energy estimates but on a careful construction of time dependent eigenvectors and eigenvalues combined with maximum principle and semigroup pointwise estimates. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | JOURNAL OF DIFFERENTIAL EQUATIONS | - |
dc.relation.ispartofseries | Vol.427 | - |
dc.rights | Elsevier | - |
dc.subject | Blowup solutions | en |
dc.subject | Finite time blowup | en |
dc.subject | Type II blowup | en |
dc.subject | Geometric heat flows | en |
dc.subject | Singularity | en |
dc.title | Non-self similar blowup solutions to the higher dimensional Yang Mills heat flows | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1016/j.jde.2025.01.039 | - |
dc.format.firstpage | 26 | - |
dc.format.lastpage | 142 | - |
ueh.JournalRanking | ISI | - |
item.fulltext | Only abstracts | - |
item.openairetype | Journal Article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.