Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/76420
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDuy-Dong Leen_US
dc.contributor.otherDuy-Thanh Huynhen_US
dc.contributor.otherPham The Baoen_US
dc.date.accessioned2025-10-09T04:20:12Z-
dc.date.available2025-10-09T04:20:12Z-
dc.date.issued2025-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-981-96-2074-6_4-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/76420-
dc.description.abstractThis paper presents a correlation-based weighted federated learning approach that combines multimodal-sensing models with knowledge distillation methods. In this case, local models residing on the client devices are regarded as student models and are trained individually, after which their parameters are weighted by the Pearson correlation coefficient before aggregating into a global model. The global model parameters are then distilled by a teacher model on the server. This solution is especially advantageous in cases where edge devices are deployed with weak and heterogeneous configurations, as it permits efficient computational resource management at the clients while still ensuring acceptable performance, aided by a strong teacher model hosted on the server. This solution has demonstrated efficiency when tested on NICT benchmark datasets, and the correlation-based weighted federated learning approach proves to be more stable than traditional FedAvg.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofMultiMedia Modelingen_US
dc.subjectFederated Learningen_US
dc.subjectKnowledge Distillationen_US
dc.subjectMultimodal- Sensingen_US
dc.subjectCorrelation-based weighted Aggregationen_US
dc.titleKết hợp Hệ số tương quan và Chưng cất tri thức cho Học máy Liên kết: Hướng tiếp cận mới cho IoT trên dữ liệu đa phương thứcen_US
dc.typeConference Paperen_US
dc.format.firstpage49en_US
dc.format.lastpage60en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.grantfulltextnone-
item.languageiso639-1en-
Appears in Collections:Conference Papers
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.