Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/62111Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ho K., Sim I. | - |
| dc.date.accessioned | 2021-08-20T14:50:25Z | - |
| dc.date.available | 2021-08-20T14:50:25Z | - |
| dc.date.issued | 2021 | - |
| dc.identifier.issn | 0893-9659 | - |
| dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/62111 | - |
| dc.description.abstract | We investigate the existence of a nontrivial nonnegative solution to (p,q)-Laplace equations involving two nonlinear terms, one grows as s with q<s<p and the other possibly has critical growth. This interesting case cannot be appeared in single m-Laplace equations and has not been studied under even the subcritical growth. Our argument is based on the concentration–compactness principle by P.L. Lions and the Ekeland variational principle. © 2020 Elsevier Ltd | en |
| dc.format | Portable Document Format (PDF) | - |
| dc.language.iso | eng | - |
| dc.publisher | Elsevier Ltd | - |
| dc.relation.ispartof | Applied Mathematics Letters | - |
| dc.rights | Elsevier Ltd. | - |
| dc.subject | (p,q)-Laplacian | en |
| dc.subject | Concentration–compactness principle | en |
| dc.subject | Critical growth | en |
| dc.subject | Variational method | en |
| dc.title | An existence result for (p,q)-Laplace equations involving sandwich-type and critical growth | en |
| dc.type | Journal Article | en |
| dc.identifier.doi | https://doi.org/10.1016/j.aml.2020.106646 | - |
| ueh.JournalRanking | Scopus | - |
| item.grantfulltext | none | - |
| item.cerifentitytype | Publications | - |
| item.fulltext | Only abstracts | - |
| item.openairetype | Journal Article | - |
| item.languageiso639-1 | en | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| Appears in Collections: | INTERNATIONAL PUBLICATIONS | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU
Login