Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/73742
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Do Tan Duc | - |
dc.contributor.other | Le Xuan Truong | - |
dc.date.accessioned | 2025-01-21T04:12:56Z | - |
dc.date.available | 2025-01-21T04:12:56Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 2737-0690 (Print), 2737-144X (Online) | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/73742 | - |
dc.description.abstract | Letd∈ {3,4,5, . . .}. ConsiderL=−1wdiv(A∇u) +μover its maximal domaininL2w(Rd). Under certain conditions on the weightw, the coefficient matrixAand the positiveRadon measureμwe obtain upper and lower bounds onN(λ, L)—the number of eigenvalues ofLthat are at mostλ≥1. Furthermore we show that the eigenfunctions ofLcorresponding to thoseeigenvalues are exponentially decaying. In the course of proofs, we develop generalized Poincaréand weighted Young convolution inequalities as the main tools for the analysis. | en |
dc.language.iso | eng | - |
dc.publisher | Annales Fennici Mathematici | - |
dc.relation.ispartof | Annales Fennici Mathematici | - |
dc.relation.ispartofseries | Vol. 48 | - |
dc.rights | Annales Fennici Mathematici | - |
dc.subject | Generalized Schrödinger operator | en |
dc.subject | Generalized Poincaré inequality | en |
dc.subject | Weighted Young convolution inequality | en |
dc.subject | Eigenvalue asymptotic | en |
dc.subject | Exponential decay | en |
dc.title | Spectral asymptotics for generalized Schrödinger operators | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.54330/afm.140863 | - |
dc.format.firstpage | 703 | - |
dc.format.lastpage | 727 | - |
ueh.JournalRanking | ISI, Scopus | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | Only abstracts | - |
item.openairetype | Journal Article | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.