Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/73985
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Do Huy Hoang | - |
dc.contributor.other | Truong Thi Nhan | - |
dc.contributor.other | Pham Thanh Son | - |
dc.contributor.other | Dao Van Duong | - |
dc.contributor.other | Tran Nhat Luan | - |
dc.date.accessioned | 2025-02-10T09:17:29Z | - |
dc.date.available | 2025-02-10T09:17:29Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1869-6082 | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/73985 | - |
dc.description.abstract | In theory of generalized measure, Egorov-like theorems have been investigated. In this article, we introduce generalized concepts of almost everywhere convergence and almost uniform convergence. Next Egorov-like theorems with respect to the generalized convergences are provided. Finally, versions of Egorov condition for the more general context of convergence are also established. | en |
dc.language.iso | eng | - |
dc.publisher | De Gruyter | - |
dc.relation.ispartof | JOURNAL OF APPLIED ANALYSIS | - |
dc.rights | De Gruyter | - |
dc.subject | Generalized Measure Theory | en |
dc.subject | Egorov Theorem | en |
dc.subject | Almost Everywhere Convergence | en |
dc.subject | Almost Uniform Convergence | en |
dc.subject | Convergence Concepts | en |
dc.subject | Mathematical Theorems | en |
dc.title | On Egorov-like theorems for monotone measure | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1515/jaa-2024-0103 | - |
ueh.JournalRanking | Scopus; ISI | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Journal Article | - |
item.fulltext | Only abstracts | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.