Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/74042
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoan T. Le-
dc.contributor.otherLuan D. Tran-
dc.contributor.otherTrieu N. Phung-
dc.date.accessioned2025-02-18T01:40:49Z-
dc.date.available2025-02-18T01:40:49Z-
dc.date.issued2024-
dc.identifier.issn1573-2959-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/74042-
dc.description.abstractThis research investigates the empirical effects of the laser land leveling (LLL) adoption on irrigation water and water efficiency in paddy production in the Mekong Delta region (MDR), using the randomized controlled trial (RCT) approach incorporated into input demand function models. The descriptive analysis highlights the potential for water reuse through farmers’ drainage practices. However, the dependence on experiential methods for applying technology in paddy production poses challenges that could compromise long-term sustainability. The regression results indicate that the LLL treatment leads to savings of 1975 m3 ha−1 and 1299.35 m3 ha−1 in irrigation water and net water use in paddy production, respectively, compared to the control. These savings account for 20.52% of total irrigation water use and 28.64% of net water use. The projected savings on average are 375.51 and 247.05 million m3, respectively, for irrigation water and net water use with 5% implementation of the technology in the MDR. The research highlights the environmental benefits of the LLL technology and underscores the need for its promotion to achieve water conservation in paddy production, offering policymakers insights to enhance sustainable agriculture amid climate change and water scarcity. The study addresses significant gaps in the existing literature by providing an in-depth analysis of LLL technology’s impact on irrigation water and efficiency by extending the drainage performance within the paddy mono-cropping context and employing RCT methodology combined with input demand function models to comprehensively evaluate its impact on irrigation water usage.en
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofENVIRONMENTAL MONITORING AND ASSESSMENT-
dc.relation.ispartofseriesVol. 197, Issue 1-
dc.rightsSpringer Nature-
dc.subjectLaser Land Leveling (LLL) Adoptionen
dc.subjectIrrigation Water Efficiencyen
dc.subjectPaddy Productionen
dc.subjectMekong Delta Region (MDR)en
dc.subjectRandomized Controlled Trial (RCT) Approachen
dc.subjectInput Demand Function Modelsen
dc.subjectWater Reuseen
dc.subjectDrainage Practicesen
dc.subjectLong-Term Sustainabilityen
dc.subjectEnvironmental Benefitsen
dc.subjectWater Conservationen
dc.subjectClimate Changeen
dc.subjectSustainable Agricultureen
dc.subjectRegression Analysisen
dc.subjectProjected Savingsen
dc.titleLaser land leveling technology for paddy production in Vietnam: impact on efficient irrigation and water conservationen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1007/s10661-024-13509-x-
ueh.JournalRankingISI-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.