Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/74076
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTran Quang Minh-
dc.date.accessioned2025-02-20T04:09:38Z-
dc.date.available2025-02-20T04:09:38Z-
dc.date.issued2024-
dc.identifier.issnHong-Danh Pham-
dc.identifier.issnMirelson M. Freitas-
dc.identifier.issn0944-2669 (Print), 1432-0835 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/74076-
dc.description.abstractThis paper is concerned with a class of fourth-order dispersive wave equations with exponential source term. Firstly, by applying the contraction mapping principle, we establish the local existence and uniqueness of the solution. In the spirit of the variational principle and mountain pass theorem, a natural phase space is precisely divided into three different energy levels. Then we introduce a family of potential wells to derive a threshold of the existence of global solutions and blow up in finite time of solution in both cases with sub-critical and critical initial energy. These results can be used to extend the previous result obtained by Alves and Cavalcanti (Calc. Var. Partial Differ. Equ. 34 (2009) 377–411). Moreover, an explicit sufficient condition for initial data leading to blow up result is established at an arbitrarily positive initial energy levelen
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofCalculus of Variations and Partial Differential-
dc.relation.ispartofseriesVol. 63, No. 127-
dc.rightsSpringer Nature-
dc.titleA class of fourth-order dispersive wave equations with exponential sourceen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1007/s00526-024-02731-7-
ueh.JournalRankingScopus; ISI-
item.grantfulltextnone-
item.fulltextOnly abstracts-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.