Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/74095
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTu Van Binh-
dc.date.accessioned2025-02-20T04:09:43Z-
dc.date.available2025-02-20T04:09:43Z-
dc.date.issued2024-
dc.identifier.issnNgo Giang Thy-
dc.identifier.issn1752-5055 (Print), 1752-5063 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/74095-
dc.description.abstractThe current paper applies algorithms of machine learning to predict customer churn. The study employs 211,777 instances in the telecommunication sector with six attributes employed, e.g., data, length of stay, top-up, external communication, handset of phone, and churn. Although the rules generation of Naïve Bayes, J48 (Decision Tree), and Decision Table are used, the algorithm of Decision Table is the best candidate to support churn prediction due to its highest accuracy rate of 88.8%. The finding also confirms the role of the external communication of subscribers through calls and messages (in two ways) by other subscribers from the different telecom operators influencing the subscriber's churn. The finding is a significant contribution to the telecom operators to predict churn. In particular, it comes at a time when government regulations have been adjusted to allow phone users to change networks from different service providers, but keep the same phone number.)en
dc.language.isoeng-
dc.publisherInderscience-
dc.relation.ispartofInternational Journal of Computing Science and Mathematics-
dc.relation.ispartofseriesVol. 45, No. 2-
dc.rightsInderscience Enterprises Ltd.-
dc.subjectChurnen
dc.subjectTelecomen
dc.subjectRough set theoryen
dc.subjectDecision tableen
dc.subjectNaïve Bayesen
dc.subjectDecision treeen
dc.subjectHandseten
dc.titleAn application of rough set theory to predict telecom customer churnen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1504/IJCSM.2024.137800-
dc.format.firstpage274-
dc.format.lastpage284-
ueh.JournalRankingScopus-
item.grantfulltextnone-
item.fulltextOnly abstracts-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.