Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/74380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiao Ky Duong-
dc.date.accessioned2025-02-26T08:35:22Z-
dc.date.available2025-02-26T08:35:22Z-
dc.date.issued2024-
dc.identifier.issnNejla Nouaili-
dc.identifier.issnHatem Zaag-
dc.identifier.issn0003-9527 (Print), 1432-0673 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/74380-
dc.description.abstractIn this paper, we consider the complex Ginzburg-Landau equation ∂_t u = (1 + iβ)Δu + (1 + iδ)|u|^(p-1)u - αu, where β, δ, α ∈ ℝ.The study focuses on investigating the finite-time blow-up phenomenon, which remains an open question for a broad range of parameters, particularly for β and δ. Specifically, for a fixed β ∈ ℝ, the existence of finite-time blow-up solutions for arbitrarily large values of |δ| is still unknown. According to a conjecture made by Popp et al. (Physica D Nonlinear Phenom 114:81–107 1998), when β = 0 and δ is large, blow-up does not occur for generic initial data. In this paper, we show that their conjecture is not valid for all types of initial data, by presenting the existence of blow-up solutions for β = 0 and any δ ∈ ℝ with different types of blowup.en
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS-
dc.relation.ispartofseriesVol. 248, No. 117-
dc.rightsSpringer Nature-
dc.subjectFinite time blowupen
dc.subjectBlowup asymptotic behavioren
dc.subjectStabilityen
dc.subjectComplex Ginzburg-Landau equationen
dc.titleFlat Blow-up Solutions for the Complex Ginzburg Landau Equationen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1007/s00205-024-02052-1-
ueh.JournalRankingScopus; ISI-
item.fulltextOnly abstracts-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.grantfulltextnone-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.